This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures...This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.展开更多
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet...Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.展开更多
The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale...The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.展开更多
A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was ...A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.展开更多
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
A brief introduction is made for the Numerical Manifold Method and its analysing process in rock mechanics. Some aspects of the manifold method are improved in implementing process according to the practice of excavat...A brief introduction is made for the Numerical Manifold Method and its analysing process in rock mechanics. Some aspects of the manifold method are improved in implementing process according to the practice of excavating underground openings. Corresponding formulas are given and a computer program of the Numerical Manifold Method has been completed in this paper.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic...Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.展开更多
Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp...Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.展开更多
The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the...The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations.展开更多
The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collap...The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.展开更多
The pit limit optimization is discussed, which is one of the most important problems in the combined min-ing method, on the basis of the economic model of ore-blocks. A new principle of the limit optimization is put f...The pit limit optimization is discussed, which is one of the most important problems in the combined min-ing method, on the basis of the economic model of ore-blocks. A new principle of the limit optimization is put for-ward through analyzing the limitations of moving cone method under such conditions. With a view to recovering asmuch mineral resource as possible and making the maximum profit from the whole deposit, the new principle is tomaximize the sum of gain from both open-pit and underground mining. The mathematical models along the horizon-tal and vertical directions and modules for software package (DM&MCAD) have been developed and tested inTonglushan Copper Mine. It has been proved to be rather effective in the mining practice.展开更多
For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this...For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this paper.The determinations of the structural critical moments when maximal deformations and internal forces in the longitudinal direction occur are deduced as well.When applying the proposed method,the static analysis of the free-field computation model subjected to the least favorable free-field deformation at the tunnel buried depth is performed first to calculate the equivalent input seismic loads.Then,the equivalent input seismic loads are imposed on the integral tunnel-foundation computation model to conduct the static calculation.Afterwards,the critical longitudinal seismic responses of the tunnel are obtained.The applicability of the new method is verified by comparing the seismic responses of a shield tunnel structure in Beijing,determined by the proposed procedure and by a dynamic time-history analysis under a series of obliquely incident out-of-plane and in-plane waves.The results show that the proposed method has a clear concept with high accuracy and simple progress.Meanwhile,this method provides a feasible way to determine the critical moments of the longitudinal seismic responses of a tunnel structure.Therefore,the proposed method can be effectively applied to analyze the seismic response of a long-line underground structure subjected to non-uniform excitations.展开更多
The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been bu...The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.展开更多
This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-maki...This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.展开更多
Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution netw...Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.展开更多
The mine direct current method is more and more popular in the practical application.The study of the response characteristics of the underground full space direct current electric field has certain guiding significan...The mine direct current method is more and more popular in the practical application.The study of the response characteristics of the underground full space direct current electric field has certain guiding significance for the practical application.In this paper,through numerical simulation,the potential characteristics of different abnormal body distribution are studied,and the potential characteristic curves under various models are summarized.This paper also makes a specific study on the existence of the roadway,and analyzes the influence of the roadway on the characteristics of abnormal body potential.The results show that the potential response curve of DC method can well reflect the position of abnormal body,while the vertical accuracy of electrical method data is reduced when there is tunnel influence.The above research enriches the DC exploration theory of the mine and provides guidance for the DC exploration of the whole underground space.展开更多
On the basis of Hamilton-Ostrogradskiy variation principle a system of equations of linear pipeline vibrations interacting with surrounding soil is derived with appropriate boundary and initial conditions under arbitr...On the basis of Hamilton-Ostrogradskiy variation principle a system of equations of linear pipeline vibrations interacting with surrounding soil is derived with appropriate boundary and initial conditions under arbitrary direction of seismic effect. Dynamic problem of underground pipeline is solved by finite difference method of the second order of accuracy with different combinations of boundary conditions under the effect of seismic load on a given law with arbitrary direction. Numerical implementation of the problem is realized.展开更多
In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of...In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of factors,including the geometrical characteristics of the rock and mining-induced stresses.In this study,a sensitivity analysis was conducted with the numerical,squat pillar,and Mathews stability methods using the Taguchi technique to properly understand the influence of geometric parameters and stress on stope stability according to Sormeh underground mine data.The results show a full factorial analysis is more reliable since stope stability is a complex process.Furthermore,the numerical results indicate that overburden stress has the most impact on stope stability,followed by stope height.However,the results obtained with Mathews and squat pillar methods show that stope height has the greatest impact,followed by overburden stress and span.It appears that these methods overestimate the impact of stope height.Therefore,it is highly recommended that Mathews and squat pillar methods should not be used in high stope that is divided with several sill pillars.Nonetheless,Mathews method cannot accurately predict how the sill pillar impacts the stope stability.In addition,numerical analysis shows that all geometric parameters affect the roof safety factor,whereas the sill pillar has no significant influence on the safety factor of the hanging wall,which is primarily determined by the stope height–span ratio.展开更多
基金China Earthquake Administration Association Fund Under Grant No. 106060 and Institute of Engineering Mechanics Director Fund
文摘This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金financially supported by the National Basic Research Program of China (No. 2013CBA01803)the National Natural Science Foundation of China (No. 41101065)and the CAS "Equipment Development Project for Scientific Research" (No. YZ201523)
文摘Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 51527810,51679249, 12002171 and 51909120)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0312)。
文摘The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.
文摘A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
文摘A brief introduction is made for the Numerical Manifold Method and its analysing process in rock mechanics. Some aspects of the manifold method are improved in implementing process according to the practice of excavating underground openings. Corresponding formulas are given and a computer program of the Numerical Manifold Method has been completed in this paper.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.
基金supported by High-end Foreign Expert Introduction program (No.G20190022002)Chongqing Construction Science and Technology Plan Project (2019-0045)
文摘Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.
基金Projects(50538010,50848046) supported by the National Natural Science Foundation of ChinaProject(BIL07/07) supported by the Research Council of K.U.Leuven and the National Natural Science Foundation of China
文摘The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.42177143,42277461)the Science Foundation for Distinguished Young Scholars of Sichuan Province(Grant No.2020JDJQ0011).Thanks to the Chn Energy Dadu River Hydropower Development Co.,Ltd,China Three Gorges Construction Engineering Corporation,Yalong River Hydropower Development Company,Ltd,Power China Chengdu Engineering Co.,Ltd,Power China Northwest Engineering Co.,Ltd,Power China Sinohydro Bureau 7 Co.,Ltd,China Gezhouba Group No.1 Engineering Co.,Ltd.,and the 5th Engineering Co.,Ltd.of China Railway Construction Bridge Engineering Bureau Group for the support and assistance.
文摘The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.
基金Project (59704004) supported by the National Natural Science Foundation of ChinaProject (2000) supported by Foundation for University Key Teacher by the Ministry of Education
文摘The pit limit optimization is discussed, which is one of the most important problems in the combined min-ing method, on the basis of the economic model of ore-blocks. A new principle of the limit optimization is put for-ward through analyzing the limitations of moving cone method under such conditions. With a view to recovering asmuch mineral resource as possible and making the maximum profit from the whole deposit, the new principle is tomaximize the sum of gain from both open-pit and underground mining. The mathematical models along the horizon-tal and vertical directions and modules for software package (DM&MCAD) have been developed and tested inTonglushan Copper Mine. It has been proved to be rather effective in the mining practice.
基金National Natural Science Foundation of China under Grant No.51478247。
文摘For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this paper.The determinations of the structural critical moments when maximal deformations and internal forces in the longitudinal direction occur are deduced as well.When applying the proposed method,the static analysis of the free-field computation model subjected to the least favorable free-field deformation at the tunnel buried depth is performed first to calculate the equivalent input seismic loads.Then,the equivalent input seismic loads are imposed on the integral tunnel-foundation computation model to conduct the static calculation.Afterwards,the critical longitudinal seismic responses of the tunnel are obtained.The applicability of the new method is verified by comparing the seismic responses of a shield tunnel structure in Beijing,determined by the proposed procedure and by a dynamic time-history analysis under a series of obliquely incident out-of-plane and in-plane waves.The results show that the proposed method has a clear concept with high accuracy and simple progress.Meanwhile,this method provides a feasible way to determine the critical moments of the longitudinal seismic responses of a tunnel structure.Therefore,the proposed method can be effectively applied to analyze the seismic response of a long-line underground structure subjected to non-uniform excitations.
文摘The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.
文摘This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.
文摘Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.
文摘The mine direct current method is more and more popular in the practical application.The study of the response characteristics of the underground full space direct current electric field has certain guiding significance for the practical application.In this paper,through numerical simulation,the potential characteristics of different abnormal body distribution are studied,and the potential characteristic curves under various models are summarized.This paper also makes a specific study on the existence of the roadway,and analyzes the influence of the roadway on the characteristics of abnormal body potential.The results show that the potential response curve of DC method can well reflect the position of abnormal body,while the vertical accuracy of electrical method data is reduced when there is tunnel influence.The above research enriches the DC exploration theory of the mine and provides guidance for the DC exploration of the whole underground space.
文摘On the basis of Hamilton-Ostrogradskiy variation principle a system of equations of linear pipeline vibrations interacting with surrounding soil is derived with appropriate boundary and initial conditions under arbitrary direction of seismic effect. Dynamic problem of underground pipeline is solved by finite difference method of the second order of accuracy with different combinations of boundary conditions under the effect of seismic load on a given law with arbitrary direction. Numerical implementation of the problem is realized.
文摘In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of factors,including the geometrical characteristics of the rock and mining-induced stresses.In this study,a sensitivity analysis was conducted with the numerical,squat pillar,and Mathews stability methods using the Taguchi technique to properly understand the influence of geometric parameters and stress on stope stability according to Sormeh underground mine data.The results show a full factorial analysis is more reliable since stope stability is a complex process.Furthermore,the numerical results indicate that overburden stress has the most impact on stope stability,followed by stope height.However,the results obtained with Mathews and squat pillar methods show that stope height has the greatest impact,followed by overburden stress and span.It appears that these methods overestimate the impact of stope height.Therefore,it is highly recommended that Mathews and squat pillar methods should not be used in high stope that is divided with several sill pillars.Nonetheless,Mathews method cannot accurately predict how the sill pillar impacts the stope stability.In addition,numerical analysis shows that all geometric parameters affect the roof safety factor,whereas the sill pillar has no significant influence on the safety factor of the hanging wall,which is primarily determined by the stope height–span ratio.