期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Two-and three-dimensional stability analysis of underground storage caverns in soft rock(Cappadocia, Turkey) by finite element method 被引量:2
1
作者 SARI Mehmet 《Journal of Mountain Science》 SCIE CSCD 2022年第4期1182-1202,共21页
Engineering design in soft rocks and its stability analysis exerts many challenges to rock engineers. Many engineering works in Turkey’s Cappadocia region must face and tackle the existing sites covered by the soft r... Engineering design in soft rocks and its stability analysis exerts many challenges to rock engineers. Many engineering works in Turkey’s Cappadocia region must face and tackle the existing sites covered by the soft rocks. This study is aimed to examine the stability condition of a typical underground storage cavern(USC) excavated in a soft rock in this region. For this purpose, two-and threedimensional stability analyses of the USCs were performed using the finite element method(FEM).Because of the inherent difficulty in characterizing soft/weak rock masses in the region using traditional classification systems, the stability of a typical USC was evaluated by representing the rock mass condition with two distinct scenarios in FEM analysis.While these structures were unstable according to the 2D analysis conducted in RS2 software in the worstcase scenario, they were stable in the 3D analysis using RS3 software in both scenarios. Besides,feasible cover depths were examined to assess their possible effects on the factor of safety and deformation measurements. It was found that 15 m seems to be an optimal depth for excavating a typical USC in the soft rocks exposed in the region. The 3D FEM results provide valuable information to optimize the future planning and preliminary design of USCs. 展开更多
关键词 underground storage cavern Numerical modeling Soft rock FEM analysis Rock mass failure
下载PDF
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
2
作者 Lucie Novakova Milan Broz +5 位作者 Jiri Zaruba Karel Sosna Jan Najser Lenka Rukavickova Jan Franek Vladimir Rudajev 《Applied Geophysics》 SCIE CSCD 2016年第2期315-325,418,共12页
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a com... Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for leaming about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure. 展开更多
关键词 underground storage INSTABILITY seismicitv Bohemian Massif
下载PDF
Asia's Largest Underground Storage Tank to be Built in China
3
《China Oil & Gas》 CAS 1997年第1期61-61,共1页
关键词 Asia’s Largest underground storage Tank to be Built in China
下载PDF
Sealing capacity evaluation of underground gas storage under intricate geological conditions 被引量:1
4
作者 Guangquan Zhang Sinan Zhu +4 位作者 Daqian Zeng Yuewei Jia Lidong Mi Xiaosong Yang Junfa Zhang 《Energy Geoscience》 EI 2024年第3期234-243,共10页
Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat... Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations. 展开更多
关键词 underground gas storage Sealing capacity GEOMECHANICS Maximum operational pressure
下载PDF
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs:A Review
5
作者 Lingping Zeng Regina Sander +1 位作者 Yongqiang Chen Quan Xie 《Engineering》 SCIE EI CAS CSCD 2024年第9期211-225,共15页
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large... Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies. 展开更多
关键词 underground hydrogen storage storage performance Hydrogen deliverability Hydrogen trapping Risk assessment Techno-economic analysis
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
6
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Key aspects of underground hydrogen storage in depleted hydrocarbon reservoirs and saline aquifers:A review and understanding
7
作者 Rawaa A.Sadkhan Watheq J.Al-Mudhafar 《Energy Geoscience》 EI 2024年第4期55-74,共20页
Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their cap... Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system. 展开更多
关键词 underground hydrogen storage Renewable energy Depleted reservoirs Saline aquifers Fundamental review
下载PDF
Microscopic experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
8
作者 JIANG Tongwen QI Huan +4 位作者 WANG Zhengmao LI Yiqiang WANG Jinfang LIU Zheyu CAO Jinxin 《Petroleum Exploration and Development》 SCIE 2024年第1期203-212,共10页
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic... Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee. 展开更多
关键词 water-invaded gas-reservoir underground gas storage cyclical injection-production gas-water contact gas storage and production rate UGS capacity expansion control method
下载PDF
Evaluation of the dynamic sealing performance of cap rocks of underground gas storage under multi-cycle alternating loads
9
作者 Lidong Mi Yandong Guo +3 位作者 Yanfeng Li Daqian Zeng Chunhua Lu Guangquan Zhang 《Energy Geoscience》 EI 2024年第4期125-132,共8页
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po... The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system. 展开更多
关键词 Alternating load Cap rock Dynamic sealing performance underground gas storage
下载PDF
A 2D stability analysis of the rock surrounding underground liquified natural gas storage cavern based on COMSOL Multiphysics
10
作者 Chao Zhang Pinjia Duan +4 位作者 Yuke Cheng Na Chen Huan Huang Feng Xiong Shaoqun Dong 《Energy Geoscience》 EI 2024年第3期351-361,共11页
Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage cave... Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage caverns under stress-low temperature coupling effect is the key factor determining the feasibility of LNG storage.First,a mathematical model used for controlling the stress-low temperature coupling and the processes of rock damage evolution is given,followed by a 2-D numerical execution process of the mathematical model mentioned above described based on Comsol Multiphysics and Matlab code.Finally,a series of 2-D simulations are performed to study the influence of LNG storage cavern layout,burial depth,temperature and internal pressure on the stability of surrounding rocks of these underground storage caverns.The results indicate that all the factors mentioned above affect the evolution of deformation and plastic zone of surrounding rocks.The research results contribute to the engineering design of underground LNG storage caverns. 展开更多
关键词 underground LNG storage Thermo-mechanical(TM)coupling Stability of surrounding rock Low temperature Comsol Multiphysics
下载PDF
Determination of convergence of underground gas storage caverns using non-invasive methodology based on land surface subsidence measurement
11
作者 Rafal Misa Anton Sroka +2 位作者 Mateusz Dudek Krzysztof Tajdus Stefan Meyer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1944-1950,共7页
Undergroundgas storage caverns aremonitoredfor environmental safety in termsof equipmentandpotential emissions,particularly methane emissions from the underground and above-ground parts of the storage facility.Periodi... Undergroundgas storage caverns aremonitoredfor environmental safety in termsof equipmentandpotential emissions,particularly methane emissions from the underground and above-ground parts of the storage facility.Periodical measurements of land surface deformations and costly echometric measurements of convergence of individual storage facilities are carried out.The aims of environmental monitoring are:(1)to eliminate potential hazards in the shortest time,(2)assess the overall impact of intensive operation of storage facilities on the environment,(3)developmonitoringmethods relevant to environmental protection,and(4)take actions in case of failure.The paper presents a solution to the problem of determination of the convergence of underground caverns in a salt rock mass based on the results of land surface subsidence measurements carried out using the Gauss-Markov equalization algorithm.Themethod makes it possible for ongoing control of cavern volume convergence after each subsidence measurement on the ground surface and determining the actual impact of the use frequency(injection-mediumconsumption)on the convergence in time.The presentedmethodology is universal and verified on caverns located in a salt rockmass.The Gauss-Markov inversion model is the first used in this area,hence its application is significant. 展开更多
关键词 underground storage Salt cavern CONVERGENCE SUBSIDENCE Surface deformation
下载PDF
A temperature gradient test system for investigating thermo-mechanical responses of containment materials of underground storage facilities
12
作者 Wei Wu Dazhao Lu Alessandro Romagnoli 《Rock Mechanics Bulletin》 2023年第2期76-83,共8页
Underground energy storage is a promising option for the global ambition of moving towards carbon neutrality.To achieve safe and reliable energy storage in underground caverns,it is essential to understand the contrib... Underground energy storage is a promising option for the global ambition of moving towards carbon neutrality.To achieve safe and reliable energy storage in underground caverns,it is essential to understand the contributions of thermal and mechanical loads to the deformation of containment materials(e.g.,concrete and geomaterials)and to forecast potential risks related to unexpected failure of these materials.A temperature gradient test system is developed to investigate the thermo-mechanical responses of containment materials under simulated temperature gradient and earth pressure conditions.The test system has advantages of establishing a temperature gradient of over 400C/m across a large-scale specimen and examining the resulting strain based on the digital image correlation analysis.This study sheds light on 3 typical applications of the test system to examine the thermal and mechanical responses of intact limestone,flawed limestone,and fractured concrete.The results demonstrate that the mechanical load mainly controls the strain evolution of the intact limestone,while the thermal load strongly affects the strain evolution around the circular hole.The failure pattern of concrete primarily influences the mechanically induced strain,and the thermally induced strain is insensitive to the concrete failure.This test system can be modified and upgraded to study various research topics related to underground energy storage. 展开更多
关键词 Laboratory experiment Temperature gradient Thermo-mechanical coupling underground storage
原文传递
Gleaning insights from German energy transition and large-scale underground energy storage for China’s carbon neutrality 被引量:10
13
作者 Yachen Xie Xuning Wu +6 位作者 Zhengmeng Hou Zaoyuan Li Jiashun Luo Christian Truitt Lüddeke Liangchao Huang Lin Wu Jianxing Liao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期529-553,共25页
The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adopt... The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adoption of smart energy technology and implementation of electricity futures and spot marketization,which enabled the achievement of multiple energy spatial–temporal complementarities and overall grid balance through energy conversion and reconversion technologies.While China can draw from Germany’s experience to inform its own energy transition efforts,its 11-fold higher annual electricity consumption requires a distinct approach.We recommend a clean energy system based on smart sector coupling(ENSYSCO)as a suitable pathway for achieving sustainable energy in China,given that renewable energy is expected to guarantee 85%of China’s energy production by 2060,requiring significant future electricity storage capacity.Nonetheless,renewable energy storage remains a significant challenge.We propose four large-scale underground energy storage methods based on ENSYSCO to address this challenge,while considering China’s national conditions.These proposals have culminated in pilot projects for large-scale underground energy storage in China,which we believe is a necessary choice for achieving carbon neutrality in China and enabling efficient and safe grid integration of renewable energy within the framework of ENSYSCO. 展开更多
关键词 Carbon neutrality Energy transition Large-scale underground energy storage Sector coupling
下载PDF
Simulation study of hydrogen sulfide removal in underground gas storage converted from the multilayered sour gas field 被引量:2
14
作者 Yi Yang Longxin Li +4 位作者 Xia Wang Nan Qin Ruihan Zhang Yulong Zhao Ye Tian 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期107-118,共12页
A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock an... A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites. 展开更多
关键词 underground gas storage Multilayered gas field-Sour gas reservoir Hydrogen sulfide removal.Compositional simulation
下载PDF
Key issues in water sealing performance of underground oil storage caverns: Advances and perspectives 被引量:3
15
作者 Yutao Li Bin Zhang +5 位作者 Lei Wang Yiguo Xue Hanxun Wang Lei Shi Zhenhua Peng Junyan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2787-2802,共16页
Water sealing performance is important for underground water-sealed oil storage(UWSOS).The key issues concerning water sealing performance mainly include the permeability of fractured rock mass(FRM),water-sealed safet... Water sealing performance is important for underground water-sealed oil storage(UWSOS).The key issues concerning water sealing performance mainly include the permeability of fractured rock mass(FRM),water-sealed safety(WSS),water curtain performance,and prediction and control of water inflow.This paper reviews the progress of above four key issues on water sealing performances.First,the permeability of an FRM is the basis of water sealing performance,and several commonly used permeability test methods and spatial variation characteristics of permeability are outlined.Second,the current water sealing criteria are compared,and the evaluation methods of WSS are summarized.Third,the design parameters and efficiency evaluation of water curtain systems(WCSs)are introduced.The water inflow of oil storage caverns(OSCs)can reflect the water sealing effect,and the prediction methods and control measures of water inflow are also summarized.Finally,the advantages and disadvantages of the current research are discussed,and the potential research directions are pointed out,such as optimization of water sealing criteria and FRM model,quantitative evaluation of WCS efficiency,accurate prediction of water inflow,and improvement of grouting technology. 展开更多
关键词 underground water-sealed oil storage (UWSOS) Water-sealed safety(WSS) Water curtain system(WCS) Water inflow Fractured rock mass permeability
下载PDF
Mineralogy,microstructures and geomechanics of rock salt for underground gas storage 被引量:2
16
作者 Veerle Vandeginste Yukun Ji +1 位作者 Frank Buysschaert George Anoyatis 《Deep Underground Science and Engineering》 2023年第2期129-147,共19页
Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construct... Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns. 展开更多
关键词 CREEP hydrogen IMPURITIES rock salt salt solution mining underground gas storage
下载PDF
Evaluating reservoir suitability for large-scale hydrogen storage:A preliminary assessment considering reservoir properties
17
作者 Chinedu J.Okere James J.Sheng Chinedu Ejike 《Energy Geoscience》 EI 2024年第4期198-211,共14页
With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrog... With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrogen(H_(2))injection is crucial for UHS success and safety.Recent criteria for UHS often emphasize economics and chemistry,neglecting key reservoir attributes.This study introduces a comprehensive framework for the reservoir-scale preliminary assessment,specifically tailored for long-term H_(2) storage within depleted gas reservoirs.The evaluation criteria encompass critical components,including reservoir geometry,petrophysical properties,tectonics,and formation fluids.To illustrate the practical application of this approach,we assess the Barnett shale play reservoir parameters.The assessment unfolds through three key stages:(1)A systematic evaluation of the reservoir's properties against our comprehensive screening criteria determines its suitability for H_(2) storage.(2)Using both homogeneous and multilayered gas reservoir models,we explore the feasibility and efficiency of H_(2) storage.This phase involves an in-depth examination of reservoir behavior during the injection stage.(3)To enhance understanding of UHS performance,sensitivity analyses investigate the impact of varying reservoir dimensions and injection/production pressures.The findings reveal the following:(a)Despite potential challenges associated with reservoir compaction and aquifer support,the reservoir exhibits substantial promise as an H_(2) storage site.(b)Notably,a pronounced increase in reservoir pressure manifests during the injection stage,particularly in homogeneous reservoirs.(c)Furthermore,optimizing injection-extraction cycle efficiency can be achieved by augmenting reservoir dimensions while maintaining a consistent thickness.To ensure a smooth transition to implementation,further comprehensive investigations are advised,including experimental and numerical studies to address injectivity concerns and explore storage site development.This evaluation framework is a valuable tool for assessing the potential of depleted gas reservoirs for large-scale hydrogen storage,advancing global eco-friendly energy systems. 展开更多
关键词 Site selection underground hydrogen storage Preliminary evaluation Depleted petroleum reservoirs Reservoir assessment
下载PDF
Performance of underground heat storage system in a double-film-covered greenhouse 被引量:4
18
作者 WANG Yong-wei LIANG Xi-feng 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第4期279-282,共4页
An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in gree... An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in greenhouses. The results indicated that the floor temperature was respectively 5.2℃, 4.6℃ and 2.0 ℃ higher than that of the soil in the adjacent reference greenhouse after heat storage in a clear, cloudy and overcast sky in winter. Results showed that the temperature and humidity were feasible for plant growth in the heat saving greenhouse. 展开更多
关键词 GREENHOUSE underground heat storage system Performance of heat storage Energy saving
下载PDF
Integrated Techniques of Underground CO_2 Storage and Flooding Put into Commercial Application in the Jilin Oilfield, China 被引量:2
19
作者 Hao Ziguo, Fei Hongcai and Liu Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期285-285,共1页
Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return th... Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return this "devil" to underground, and keep a peaceful environment for human? Scientists from all over the world have been exploring them. 展开更多
关键词 EOR CNPC CO Integrated Techniques of underground CO2 storage and Flooding Put into Commercial Application in the Jilin Oilfield China
下载PDF
Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir 被引量:1
20
作者 Chuan-Kai Niu Yu-Fei Tan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第3期121-128,共8页
One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and ma... One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects. 展开更多
关键词 underground gas storage reservoir(UGSR) cushion gas carbon dioxide mixed zone porous media
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部