This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reser...This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reservoir of Daliuta Coal Mine is taken as the research object.Simulation experiments were designed and conducted to simulate water–rock action in the laboratory.The mineral composition was analyzed by X-ray diffractometer(XRD),the surface morphology of the mineral was analyzed by scanning electron microscope(SEM),and the specific surface area,total pore volume and average pore diameter of the mineral were measured by fast specific surface/pore analyzer(BET).The experimental results show that the sandstone and mudstone in the groundwater reservoir of Daliuta Coal Mine account for 70%and 30%,respectively.The pore diameter is 15.62–17.55 nm,and pore volume is 0.035 cc/g.Its pore structure is a key factor in the occurrence of water–rock interaction.According to the water–rock simulation experiment,the quartz content before the water–rock action is about 34.28%,the albite is about 21.84%,the feldspar is about 17.48%,and the kaolinite is about 8.00%.After the water–rock action,they are 36.14%,17.78%,11.62%,and 16.75%,respectively.The content of albite and orthoclase is reduced while the content of kaolinite is increased,that is,the Na+content becomes higher,and the Ca2+and Mg2+contents become lower.This research builds a good theoretical foundation for revealing the role of water and rock in underground coal reservoirs.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with ...A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%.展开更多
Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the chall...Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.展开更多
The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. ...The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.展开更多
A large number of mines are closed or abandoned every year in China.Geothermal utilization is one of the important ways to efficiently reuse underground resources in abandoned mines.How to calculate the volume and dis...A large number of mines are closed or abandoned every year in China.Geothermal utilization is one of the important ways to efficiently reuse underground resources in abandoned mines.How to calculate the volume and distribution of underground water storage space is the key to accurately evaluate the sustainable geothermal production in abandoned mines.In this paper,according to the multi-scale characteristics of the underground space in abandoned mine,the flow and heat transfer equations in the multi-scale space are sorted out systematically,and the calculation methods of different secondary space volumes are derived in detail.Taking Jiahe abandoned mine as the background,the volume and distribution of underground secondary space are calculated,and three heat storage evaluation models considering different water storage spaces are established by using COMSOL.The simulation results show that there are great differences among different models,and the results of the equivalent porous media model considering the multi-scale space are most consistent with the reality.Sensitivity analyses of key parameters model results indicated that the heat production is closely related to not only the recharge flow rate but also the recharge temperature and operating time.Furthermore,the energy saving and emission reduction benefits of geothermal utilization in abandoned mines are calculated,the results show that geothermal utilization of abandoned mines can effectively reduce energy consumption and CO_(2)emissions,and it has great economic benefits.展开更多
Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basi...Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal samples, equilibrium moisture samples and dry coal samples, probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact. Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better. Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction.展开更多
Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water ...Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water by gas under different displacement pressures were systematically carried out based on nuclear magnetic resonance(NMR)technology using low-permeability coal samples of medium-high coal rank from Yunnan and Guizhou,China.The results reveal that both the residual water content(W_(r))and residual water saturation(S_(r))of coal gradually decrease as the displacement pressure(P)decreases.When P is 0-2 MPa,the decline rates of W_(r) and S_(r) are fastest,beyond which they slow down gradually.Coal samples with higher permeability exhibit higher water flowability and larger decreases in W_(r) and S_(r).Compared with medium-rank coal,high-rank coal shows weaker fluidity and a higher proportion of irreducible water.The relationship between P and the cumulative displaced water content(W_(c))can be described by a Langmuir-like equation,W_(c)=WLP/(PL+P),showing an increase in W_(c) in coal with an increase in P.In the low-pressure stage from 0 to 2 MPa,W_(c) increases most rapidly,while in the high-pressure stage(P>2 MPa),W_(c) tends to be stable.The minimum pore diameter(d′)at which water can be displaced under different displacement pressures was also calibrated.The d′value decreases as P increases in a power relationship;i.e.,d′the coal gradually decreases with the gradual increase in P.Furthermore,the d′values of most of the coal samples are close to 20 nm under a P of 10 MPa.展开更多
基金This work was co-supported by the Yue Qi Young Scholar Project,China University of Mining&Technology,Beijing(2019QN08)National Key Research and Development Program of China(2018YFC0406404)+2 种基金Research on Ecological Restoration and Protection of Coal Base in Arid Eco-fragile Region(GJNY2030XDXM-19-03.2)the Fundamental Research Funds for the Central Universities(2020YJSHH12)the scientific and technological innovation project of Shenhua Group(SHJT-16-28).
文摘This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reservoir of Daliuta Coal Mine is taken as the research object.Simulation experiments were designed and conducted to simulate water–rock action in the laboratory.The mineral composition was analyzed by X-ray diffractometer(XRD),the surface morphology of the mineral was analyzed by scanning electron microscope(SEM),and the specific surface area,total pore volume and average pore diameter of the mineral were measured by fast specific surface/pore analyzer(BET).The experimental results show that the sandstone and mudstone in the groundwater reservoir of Daliuta Coal Mine account for 70%and 30%,respectively.The pore diameter is 15.62–17.55 nm,and pore volume is 0.035 cc/g.Its pore structure is a key factor in the occurrence of water–rock interaction.According to the water–rock simulation experiment,the quartz content before the water–rock action is about 34.28%,the albite is about 21.84%,the feldspar is about 17.48%,and the kaolinite is about 8.00%.After the water–rock action,they are 36.14%,17.78%,11.62%,and 16.75%,respectively.The content of albite and orthoclase is reduced while the content of kaolinite is increased,that is,the Na+content becomes higher,and the Ca2+and Mg2+contents become lower.This research builds a good theoretical foundation for revealing the role of water and rock in underground coal reservoirs.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
基金The research presented in this article was performed within the work"Conducting an exsitu experiment of underground coal gasification with a mineral interlayer"commissioned and funded by the Silesian University of Technology in Gliwice,Department of Applied Geology,by order sign ZP/018521/18/ZZ/01987/18.
文摘A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%.
基金Supported by the PetroChina Science and Technology Major Project(2019E-25)
文摘Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.
基金Supported by National Natural Science Foundation of China(5 990 60 14 )
文摘The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.
基金supported by the Beijing Natural Science Foundation(8212033)the Fundamental Research Funds for the Central Universities(2021JCCXLJ05)innovation fund research project(SKLGDUEK202221).
文摘A large number of mines are closed or abandoned every year in China.Geothermal utilization is one of the important ways to efficiently reuse underground resources in abandoned mines.How to calculate the volume and distribution of underground water storage space is the key to accurately evaluate the sustainable geothermal production in abandoned mines.In this paper,according to the multi-scale characteristics of the underground space in abandoned mine,the flow and heat transfer equations in the multi-scale space are sorted out systematically,and the calculation methods of different secondary space volumes are derived in detail.Taking Jiahe abandoned mine as the background,the volume and distribution of underground secondary space are calculated,and three heat storage evaluation models considering different water storage spaces are established by using COMSOL.The simulation results show that there are great differences among different models,and the results of the equivalent porous media model considering the multi-scale space are most consistent with the reality.Sensitivity analyses of key parameters model results indicated that the heat production is closely related to not only the recharge flow rate but also the recharge temperature and operating time.Furthermore,the energy saving and emission reduction benefits of geothermal utilization in abandoned mines are calculated,the results show that geothermal utilization of abandoned mines can effectively reduce energy consumption and CO_(2)emissions,and it has great economic benefits.
文摘Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal samples, equilibrium moisture samples and dry coal samples, probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact. Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better. Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Grant No.41772155)the Advanced Basic Research Projects of China National Petroleum Corporation(2019B-4910).
文摘Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water by gas under different displacement pressures were systematically carried out based on nuclear magnetic resonance(NMR)technology using low-permeability coal samples of medium-high coal rank from Yunnan and Guizhou,China.The results reveal that both the residual water content(W_(r))and residual water saturation(S_(r))of coal gradually decrease as the displacement pressure(P)decreases.When P is 0-2 MPa,the decline rates of W_(r) and S_(r) are fastest,beyond which they slow down gradually.Coal samples with higher permeability exhibit higher water flowability and larger decreases in W_(r) and S_(r).Compared with medium-rank coal,high-rank coal shows weaker fluidity and a higher proportion of irreducible water.The relationship between P and the cumulative displaced water content(W_(c))can be described by a Langmuir-like equation,W_(c)=WLP/(PL+P),showing an increase in W_(c) in coal with an increase in P.In the low-pressure stage from 0 to 2 MPa,W_(c) increases most rapidly,while in the high-pressure stage(P>2 MPa),W_(c) tends to be stable.The minimum pore diameter(d′)at which water can be displaced under different displacement pressures was also calibrated.The d′value decreases as P increases in a power relationship;i.e.,d′the coal gradually decreases with the gradual increase in P.Furthermore,the d′values of most of the coal samples are close to 20 nm under a P of 10 MPa.
基金supported by the tight oil development demonstration project of Ordos basin in China(2017 ZX05069)the key scientifi c research program of Shaanxi provincial department of education(20JY056).