期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
The influence of different underlying surface on sand-duststorm in northern China 被引量:4
1
作者 SONG Yang QUAN Zhanjun LIU Lianyou YAN Ping CAO Tong 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期431-438,共8页
In this paper, a quantitative research on the relationship between different underlying surface and sand-dust storm has been made by using 40 years meteorological data of five different types of underlying surface in ... In this paper, a quantitative research on the relationship between different underlying surface and sand-dust storm has been made by using 40 years meteorological data of five different types of underlying surface in northern China, which include farmland, grassland, sandland, gobi and salt crust. These metrological data comprise sand-dust storm days and strong wind days. By analyzing, we can find that there are certain correlations between the days of sand-dust storm and strong wind for different underlying surface, which has great influence on sand-dust storm. But there are pronounced differences in different types of underlying surface. The sand-dust storm days of grassland, gobi and salt crust, with smaller interannual variation are obviously less than strong wind days. On the other hand, the sand-dust storm days of farmland and sandland increase evidently, even in many years, are much more than strong wind days. The differences are mainly induced by the influencing mechanism of different underlying surface on sand-dust storm. Grassland, gobi and salt crust with stable underlying surface are not prone to sand-dust storm under strong wind condition. Whereas, the underlying surface of farmland and sandland is unstable, that is easy to induce sand-dust storm under strong wind condition. 展开更多
关键词 sand-dust storm underlying surface strong wind northern China
下载PDF
Analysis on Thermal Environment of Underlying Surface and PM2.5 Concentration in Community Park of Beijing in Winter 被引量:3
2
作者 PENG Li XU Zhenghou CHEN Heming 《Journal of Landscape Research》 2020年第6期41-46,共6页
Community park is one of the most important landscape spaces for urban people to live outdoors,and people’s perception of environmental microclimate is a direct factor affecting the use frequency and experience of co... Community park is one of the most important landscape spaces for urban people to live outdoors,and people’s perception of environmental microclimate is a direct factor affecting the use frequency and experience of community parks.In this paper,Shijingshan Sculpture Park of Beijing was taken as experimental object.Using the method of fi eld measurement,9-d winter test for 3 months was conducted in three kinds of landscape architecture spaces,including waterfront plaza,open green space and square under the forest.Via regression analysis method,the measured air temperature(Ta),relative humidity of air(RH),particulate matter(PM2.5)were analyzed.It is found that winter sunshine is main infl uence factor of garden microclimate,and there is a negative correlation between local temperature and humidity;local temperature and humidity can regulate the local PM2.5 concentration,and temperature shows negative correlation with PM2.5 concentration,while humidity shows positive correlation with PM2.5 concentration.Meanwhile,via comparative analysis of temperature,humidity and PM2.5 concentration in different types of garden spaces,the infl uence of different space forms,planting forms and materials on thermal environment of underlying surface and PM2.5 concentration was summarized,and design strategy was optimized,to be as benefi cial reference of reconstruction design of community parks. 展开更多
关键词 Garden microclimate Community park Thermal environment of underlying surface PM2.5 concentration WINTER
下载PDF
The evapotranspiration and environmental controls of typical underlying surfaces on the Qinghai-Tibetan Plateau 被引量:1
3
作者 JinLei Chen Jun Wen +2 位作者 ShiChang Kang XianHong Meng XianYu Yang 《Research in Cold and Arid Regions》 CSCD 2021年第1期53-61,共9页
To reveal the characteristics of evapotranspiration and environmental control factors of typical underlying surfaces(alpine wetland and alpine meadow)on the Qinghai-Tibetan Plateau,a comprehensive study was performed ... To reveal the characteristics of evapotranspiration and environmental control factors of typical underlying surfaces(alpine wetland and alpine meadow)on the Qinghai-Tibetan Plateau,a comprehensive study was performed via in situ observations and remote sensing data in the growing season and non-growing season.Evapotranspiration was positively correlated with precipitation,the decoupling coefficient,and the enhanced vegetation index,but was energy-limited and mainly controlled by the vapor pressure deficit and solar radiation at an annual scale and growing season scale,respectively.Compared with the non-growing season,monthly evapotranspiration,equilibrium evaporation,and decoupling coefficient were greater in the growing season due to lower vegetation resistance and considerable precipitation.However,these factors were restricted in the alpine meadow.The decoupling factor was more sensitive to changes of conductance in the alpine wetland.This study is of great significance for understanding hydro-meteorological processes on the Qinghai-Tibetan Plateau. 展开更多
关键词 EVAPOTRANSPIRATION control factor typical underlying surfaces Qinghai-Tibetan Plateau
下载PDF
Analysis about the influence on the thermal regime in permafrost regions with different underlying surfaces
4
作者 QiangQiang Pang Lin Zhao +1 位作者 YongJian Ding ShuXun Li 《Research in Cold and Arid Regions》 2010年第3期203-211,共9页
In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely in... In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature. 展开更多
关键词 permafrost underlying surface thermal regime Qinghai-Tibet Plateau
下载PDF
Stormwater Quality Characteristics and Reuse Analysis of Different Underlying Surfaces at Wanzhou North Station
5
作者 Shaochun Yuan Ting Li +3 位作者 Qingwei Yang Shun You Tao He Bo Lv 《Journal of Environmental & Earth Sciences》 2022年第2期45-53,共9页
In response to the water shortage in Wanzhou North Station(WNS),the authors investigated the stormwater quality characteristics with different underlying surfaces of WNS and carried out stormwater reuse analysis in co... In response to the water shortage in Wanzhou North Station(WNS),the authors investigated the stormwater quality characteristics with different underlying surfaces of WNS and carried out stormwater reuse analysis in conjunction with the InfoWorks ICM model.The results show that during heavy,torrential,and moderate rainfall,the road stormwater runoff has the highest concentrations of pollutants,with an average EMC(event mean concentration)value of 206 mg/L for COD.For the square runoff,the average EMC values of COD,SS,TN,and TP are 108 mg/L,395 mg/L,2.113 mg/L,and 0.128 mg/L,in comparison,the average EMC values of the corresponding indexes for the roof runoff are 65 mg/L,212 mg/L,1.449 mg/L,and 0.086 mg/L,respectively,demonstrating their potential for reuse.The R2(coefficient of determination)of SS and COD in both roof and square runoff are greater than 0.85,with a good correlation,indicating that SS removal is the key to stormwater purification.InfoWorks ICM analysis shows that the recyclable volume of rainwater from WNS in 2018 is 29,410 m3,accounting for 61.8%of the total annual rainfall.This study is expected to provide an ideal reference for the stormwater management of public buildings in mountainous areas. 展开更多
关键词 Stormwater quality underlying surface Recyclable rainfall Stormwater utilization
下载PDF
Numerical Simulation Experiment of Land Surface Physical Processes and Local Climate Effect in Forest Underlying Surface 被引量:4
6
作者 刘树华 潘英 +7 位作者 邓毅 马明敏 姜海梅 蔺洪涛 蒋浩宇 梁福明 刘和平 王建华 《Acta meteorologica Sinica》 SCIE 2006年第1期72-85,共14页
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical... Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere. 展开更多
关键词 forest underlying surface land surface physical processes local climate effect numerical simulation experiments
原文传递
Regulation characteristics of underlying surface on runoff regime metrics and their spatial differences in typical urban communities across China 被引量:2
7
作者 Yongyong ZHANG Jinjin HOU +3 位作者 Jun XIA Dunxian SHE Shengjun WU Xingyao PAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第8期1415-1430,共16页
The regulation and spatial differences of urban runoffs are of great concern in contemporary hydrological research.However,owing to a shortage of basic data sources and restrictions on urban hydrological simulation fu... The regulation and spatial differences of urban runoffs are of great concern in contemporary hydrological research.However,owing to a shortage of basic data sources and restrictions on urban hydrological simulation functions,simulating and investigating the regulation mechanism behind rainfall-runoff processes remain significantly challenging.In this study,the Time Variant Gain Model(TVGM),a hydrological nonlinear system model,was extrapolated to the hydrodynamic model of an urban drainage network system by integrating it with the widely used Stormwater Management Model(SWMM)to adequately simulate urban runoff events while considering various underlying surfaces and runoff routing modes,such as surface,drainage network and river runoff,in urban regions(i.e.,TVGM-SWMM).Moreover,runoff events were characterized using the following four runoff regime metrics:runoff coefficient,capture ratio of annual runoff volume,standardized flood timescale,and the ratio of occurrence time differences between flow and rainfall peak to event duration(peak flow delay time).The characteristics and spatial differences of urban runoff regulations were investigated,and the key impact factors and their relative contributions were identified using multivariate statistical analyses.Four communities were selected as our study areas,consisting of communities from Beijing,Shenzhen,Wuhan,and Chongqing.Our results showed that the TVGM-SWMM performed considerably better than SWMM alone.The comprehensive simulation accuracy of 60%of the events(12/20)improved by 4-86%,with the bias improving the most,followed by the efficiency coefficient.Barring the runoff coefficient,significant spatial differences were identified at the patch scale for the runoff regime metrics,with differences of 0.43,0.22,and 0.16(p<0.05).The key impact factors were the pipe length(r=0.51)in the drainage network system and the forest area ratios(r=0.56),sponge measures(r=0.52),grassland(r=0.48),and impervious surface(r=0.46)in the underlying surfaces.The contributions of the drainage network system and the underlying surfaces were 4.27%and 37.83%,respectively.Regulation in the Beijing community,dominated by grassland regulation,delayed and reduced the peak flow and total runoff volume.In the Shenzhen community,sharp and thin runoff events were mainly generated by impervious surfaces and were not adequately regulated.Forest regulation was the dominant regulation type in the Wuhan community,which reduced the total runoff volume and delayed the peak flow.Waterbody regulation was the primary regulation type in the Chongqing community,which reduced the total runoff volume and peak flow.This study aims to introduce a comprehensive theoretical and technical assessment of the hydrological effects of urbanization and the performance of sponge city construction and provide a reference for urban hydrological model improvements in China. 展开更多
关键词 Runoff event Regime metrics Spatial differences Urban rainfall-runoff model underlying surface regulation
原文传递
Observational study of land-atmosphere turbulent flux exchange over complex underlying surfaces in urban and suburban areas 被引量:1
8
作者 Jie SHA Jun ZOU Jianning SUN 《Science China Earth Sciences》 SCIE EI CSCD 2021年第7期1050-1064,共15页
Based on observation data from urban observation stations in Nanjing and Suzhou at two heights in the roughness sublayer above the canopy and observation data at three heights in the SORPES station at the Xianlin Camp... Based on observation data from urban observation stations in Nanjing and Suzhou at two heights in the roughness sublayer above the canopy and observation data at three heights in the SORPES station at the Xianlin Campus of Nanjing University in a suburban area,the of land-atmosphere turbulent flux exchange and the energy balance over complex underlying surfaces were analyzed.The results indicated that in the roughness sublayer above the canopy,the nearsurface momentum flux,sensible heat flux,and latent heat flux increase with height,and the observation value of the surface albedo increases with height.However,the observation value of the net radiation decreases with height,thus resulting in a change in the urban surface energy budget with height.At the SORPES station in the Xianlin Campus of Nanjing University located in a hilly area,the momentum flux,sensible heat flux,and latent heat flux of the ground observation field significantly differed from those of the two heights on the tower,while the two heights on the tower were extremely close.These results indicate that the flux observation over the complex underlying surface exhibits adequate local only when it is conducted at a higher altitude above the ground.The turbulent flux observation results at a lower altitude in urban areas are underestimated,while the turbulent flux observation results near the surface produce a large deviation over the underlying hilly complex. 展开更多
关键词 Complex underlying surface Land-atmosphere exchange Turbulent flux Observation height Local representativeness
原文传递
Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca2CuO2Cl2 被引量:1
9
作者 胡成 赵建发 +9 位作者 丁颖 刘静 高强 赵林 刘国东 俞理 靳常青 陈创天 许祖彦 周兴江 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期84-89,共6页
The parent compounds of the high-temperature cuprate superconductors are Mott insulators.It has been generally agreed that understanding the physics of the doped Mott insulators is essential to understanding the mecha... The parent compounds of the high-temperature cuprate superconductors are Mott insulators.It has been generally agreed that understanding the physics of the doped Mott insulators is essential to understanding the mechanism of high temperature superconductivity.A natural starting point is to elucidate the basic electronic structure of the parent compound.Here we report comprehensive high resolution angle-resolved photoemission measurements on Ca_2CuO_2Cl_2,a Mott insulator and a prototypical parent compound of the cuprates.Multiple underl.ying Fermi surface sheets are revealed for the first time.The high energy waterfall-like band dispersions exhibit different behaviors near the nodal and antinodal regions.Two distinct energy scales are identified:a d-wave-like low energy peak dispersion and a nearly isotropic lower Hubbard band gap.These observations provide new information of the electronic structure of the cuprate parent compound,which is important for understanding the anomalous physical properties and superconductivity mechanism of the high temperature cuprate superconductors. 展开更多
关键词 CuO Evidence for Multiple underlying Fermi surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca2CuO2Cl2 Ca Cl
下载PDF
The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer 被引量:15
10
作者 胡隐樵 左洪超 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第5期794-798,共5页
Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport fl... Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric boundary layer is related not only to their macroscopic gradient but also to the convergence and the divergence movement. The transportation of the convergence or divergence movement is important for the atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer. Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameterization of land surface processes over the heterogeneous underlying surface are studied. This research offers clues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlying surface, but also for overcoming the difficulties encountered recently in the application of the atmospheric boundary layer theory. 展开更多
关键词 linear thermodynamics turbulent transportation cross coupling atmospheric boundary layer heterogeneous underlying surface
下载PDF
Large Eddy Simulation and Study of the Urban Boundary Layer 被引量:5
11
作者 苗世光 蒋维楣 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期650-661,共12页
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The... Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind vel 展开更多
关键词 uniform underlying surface urban boundary layer planetary boundary layer large eddy simulation (LES) ANISOTROPY turbulent kinetic energy closure model
下载PDF
Climate change in the Sanjiang Plain disturbed by large-scale reclamation 被引量:2
12
作者 YAN Minhua, DENG Wei, CHEN Panqin(Changchun Institute of Geography, CAS, Changchun 130021, China) 《Journal of Geographical Sciences》 SCIE CSCD 2002年第4期405-412,共8页
Up to 1949, wetlands stretched continuously and accounted for 80.17% of the total area of plain part of the Sanjiang Plain. However, wetlands in the plain have gone through 4 periods (1956–1960, 1960–1977, 1980–198... Up to 1949, wetlands stretched continuously and accounted for 80.17% of the total area of plain part of the Sanjiang Plain. However, wetlands in the plain have gone through 4 periods (1956–1960, 1960–1977, 1980–1986, 1986-the present) of large-scale reclamation from 1956 to the present. Over 50% wetlands had changed into agricultural fields. The underlying surface of the plain has changed tremendously. This study investigated the regional climate change by analyzing regional climatic variation and tendency and examining climate jumps over the last 45 years. Monthly records of 5 climatic factors (air temperature, precipitation, atmospheric pressure, sunshine time and wind speed) for 26 meteorological stations covering the period 1955–1999 were used. The annual mean temperature of the study region was tending to go up and increased by 1.2–2.3 °C during the last 45 years. The maximum of annual precipitation decrease in the region was 90 mm over the last 45 years. An abrupt warming of the annual mean temperature occurred in the mid-1980s, which had an increase amplitude of 0.9 °C. Of increase amplitudes of all the seasonal abrupt warming, the largest one was 1.8 °C in the winter since 1987. The plain used to be cold and humid with center of Heilongjiang province even till the late 1960s, for it had an underlying surface of wetlands in the main. However, based on the facts of the climate changes of the plain over the last 45 years, it is held that the plain had a larger warming amplitude than that of area around it in recent years probably resulted from the large-scale reclamation of various kinds of wetlands. 展开更多
关键词 climate change climate jump underlying surface the Sanjiang Plain large-scale reclamation
下载PDF
A 2-D Non-local Closure Model for Atmospheric Boundary Layer Simulations
13
作者 蒋维楣 王雪梅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1996年第2期169-182,共14页
In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is ... In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement. 展开更多
关键词 Non-local closure 2-D numerical model The PBL simulation Non-uniform underlying surface
下载PDF
Study of Aerodynamic Parameters on Different Underling Surfaces 被引量:1
14
作者 茅宇豪 刘树华 +2 位作者 张称意 刘立超 李婧 《Acta meteorologica Sinica》 SCIE 2007年第1期87-97,共11页
Aerodynamic parameters including the zero-plane displacement (d), roughness length (z0), and friction velocity (u*) on the different underlying surfaces of heavy-gazing site, medium-grazing site, light-grazing ... Aerodynamic parameters including the zero-plane displacement (d), roughness length (z0), and friction velocity (u*) on the different underlying surfaces of heavy-gazing site, medium-grazing site, light-grazing site, no-grazing site, dune, inter-dune, grassland, rice paddy site, wheat site, soybean site, and maize site have been computed based on the Monin-Obukhov similarity theory by utilizing the micrometeorologically observed data of dune and vegetation in the semi-arid area at Naiman, Inner Mongolia of China, conducted jointly by the Institute of Desert Research, Chinese Academy of Sciences and the National Institute of Agro- Environmental Sciences of Japan in 1990-1994. And their relationships between wind speed and Richardson number are analyzed. The aerodynamic characteristics of different man-made disturbed grassland ecosystems are also compared. Result shows that the vegetation coverage and the above-ground biomass decrease with the increase in man-made stress of the grassland. The roughness length for different underlying surfaces is closely related to vegetation height, above-ground biomass, and ground surface undulation, and Richardson number Ri is also its influencing factor. The friction velocity varies largely on different underlying surfaces, and it is positively proportional to wind speed and roughness length. The aerodynamic parameters of various times on the same underlying surface are different, too. Above results indicate that grassland and vegetation are of significance in preventing desertification, especially in the arid and semi-arid land ecosystems. And the results of this paper are also important for constructing the land surface physical process as well as regional climate model. 展开更多
关键词 different underlying surfaces aerodynamic parameter different man-made disturbed grasslandecosystems
原文传递
NUMERICAL SIMULATIONS OF HEATING ANOMALY EFFECTS OF TIBETAN PLATEAU ON CIRCULATION IN SUMMER 被引量:1
15
作者 钱永甫 刘晓东 钟中 《Acta meteorologica Sinica》 SCIE 1992年第1期70-81,共12页
A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East ... A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East Asia in sum- mer,The model is described briefly in the text and the results are analysed in somewhat detail.Results show that the sur- face albedo,the drag coefficient,the evaporation rate and the ground temperature all have large influences on the circula- tion near the Plateau and in East Asia.When the heating at the surface increases,the Tibetan high in the upper troposphere intensifies,too.Its area enlarges and its axis tilts to northwest.The upper tropical easterly increase and shifts to north.The southwesterly in the lower troposphere,in consistence,also increases.The cross-equatorial low-lev- el currents along Somali and South India are influenced to increase their speeds while those over North Australia de- crease.The land low over the Asian Continent deepens.Meanwhile the upward motions over the land of east China and over the Indo-China Peninsula intensify and therefore the precipitation over those areas increases.However,along the coastal area of China the upward motions and therefore the precipitation decrease. Atmospheric heat source anomaly has large influence on the circulation,too.Simulated results indicate that heat source anomaly in the lower atmosphere over the Plateau influences the intensity and the position of the monsoon circu- lation while that in the upper atmosphere only affects the intensity.The heating status over the Plateau has slight influ- ence on the westerly jet,north of the Plateau,while it has strong effect on the subtropical jet at the mid and low latitudes. 展开更多
关键词 heating effects of the Tibetan Plateau numerical simulation of general circulation effects of heating anomalies on circulation effects of underlying surfaces
原文传递
NUMERICAL EXPERIMENTS ON THE FORMATION OF THE EASTERN PACIFIC SUMMER MONSOON
16
作者 高雷 李维亮 王斌 《Acta meteorologica Sinica》 SCIE 1995年第3期257-266,共10页
In this paper,we use a two-dimensional primary equation model which contains (1) heating of radiation,(2) heating of condensation,and (3) transfers of sensible and latent heat between air and the underlying surface.To... In this paper,we use a two-dimensional primary equation model which contains (1) heating of radiation,(2) heating of condensation,and (3) transfers of sensible and latent heat between air and the underlying surface.To investigate the causes for the formation of the eastern North Pacific sum- mer monsoon,the data at 110°W are obtained and winds at underlying surface and at 200 hPa are modified under the conditions (1) removing topography and (2) changing meridional sea surface tem- perature (SST) gradient. In the numerical modification,we find that by removing the topography,the center's location of the eastern North Pacific summer monsoon does not change,but the intensity of the summer monsoon is weakened.Also the onset of the summer monsoon is delayed to the end of May.The tropical east- erly jet is weakened obviously,even changes to westerly wind.On the other hand,we find that the SST gradient along 110°W influences the eastern North Pacific summer monsoon distinctly.If the SST gradient is decreased,the center of the southwest wind near 12°N does not exist any more.the intensity of the whole summer monsoon becomes very weak and the circulation pattern of the summer monsoon also changes a lot. Finally,we indicate that both topography and meridional SST gradient play important roles in the occurrence of the eastern North Pacific summer monsoon.The meridional SST gradient is the most important factor that triggers the summer monsoon and the topography along 110°W influences the intensity and the onset time of the summer monsoon there mostly. 展开更多
关键词 summer monsoon sensitivity experiment INTENSITY underlying surface
原文传递
NUMERICAL EXPERIMENTS ON THE EFFECT OF QINGHAIXIZANG PLATEAU SNOW COVER ON SUMMER MONSOON FORMATION 被引量:1
17
作者 张正秋 李维亮 陈隆勋 《Acta meteorologica Sinica》 SCIE 1991年第4期442-455,共14页
The calculating schemes of underlying surface processes in the model described by Li et al.(1989) are modified with inclusion of simple land surface processes and oceanic mixed layer processes, then a simulation on th... The calculating schemes of underlying surface processes in the model described by Li et al.(1989) are modified with inclusion of simple land surface processes and oceanic mixed layer processes, then a simulation on the zonal wind along 90°E from the Northern to the Southern Hemisphere with moun- tains is performed.Comparisons of the results and the observations show that the modified model not only has an excellent stability in calculation but also can better display the seasonal change of the wind field,the ability of the present model is improved as compared with that of the previous one. Based on the simulations,the authors investigate the effects of Qinghai-Xizang Plateau snow cover on the formation of South Asian monsoon by thickcning the snow depth and by increasing the snow albedo.The main results arc as follows:The summer meridional circulation over the south of the Plateau and its vicinity is weakeued,and the precipitation reduced.However,over the northern tropics,the circulation is enhanced, and the ecipitation is increased,and the land and the air above it become warmer,the tropical easterly jet is weakened. 展开更多
关键词 underlying surface process MONSOON Qinghai-Xizang Plateau snow cover sensitivity experiment
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部