The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa...This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.展开更多
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic...For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.展开更多
Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab a...Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab.展开更多
Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th...The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.展开更多
This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault...This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.展开更多
The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c...The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods.展开更多
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel...It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign...Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.展开更多
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color...Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
This article provides an overview of underwater sound-absorbing materials mainly applied with polyurethane matrix.It mainly elaborates on the underwater sound mecha-nism,commonly used underwater sound-absorbing materi...This article provides an overview of underwater sound-absorbing materials mainly applied with polyurethane matrix.It mainly elaborates on the underwater sound mecha-nism,commonly used underwater sound-absorbing materials and structures,as well as new underwater sound-absorbing material structures derived from local resonance pho-nonic crystals,such as phononic crystals,local resonance phonon wood piles,and meta-material sound-absorbing structures.This provides a broader development space and direction for the future development of underwater sound-absorbing materials.展开更多
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ...The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV.展开更多
For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,an...For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.展开更多
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of ...In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.展开更多
Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algor...Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.展开更多
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.
基金Scientific Research Fund of Liaoning Provincial Education Department(No.JGLX2021030):Research on Vision-Based Intelligent Perception Technology for the Survival of Benthic Organisms.
文摘For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.
基金The supports from the Natural Science Research of Jiangsu Higher Education Institutions of China(21KJB580001)the National Natural Science Foundation of China(Grant No.52209162,51979152)+2 种基金Educational Commission of Hubei Province of China(T2020005)Young Top-notch Talent Cultivation Program of Hubei ProvinceJiangxi Provincial Natural Science Foundation(20212BAB214044)。
文摘Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab.
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金supported by the National Natural Science Foundation of China(No.61871283).
文摘The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.
基金the National Natural Science Foundation of China(62303012,62236002,61911004,62303008)。
文摘This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.
基金support of the National Key R&D Program of China(No.2022YFC2803903)the Key R&D Program of Zhejiang Province(No.2021C03013)the Zhejiang Provincial Natural Science Foundation of China(No.LZ20F020003).
文摘The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods.
基金provided by the shale gas resource evaluation methods and exploration technology research project of the National Science and Technology Major Project of China(No.2016ZX05034)Graduate Innovative Engineering Funding Project of China University of Petroleum(East China)(No.YCX2021109)。
文摘It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金supported in part by the National Key Research and Development Program of China(2020YFB1313002)the National Natural Science Foundation of China(62276023,U22B2055,62222302,U2013202)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-22-003C1)the Postgraduate Education Reform Project of Henan Province(2021SJGLX260Y)。
文摘Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.
基金supported by the national key research and development program (No.2020YFB1806608)Jiangsu natural science foundation for distinguished young scholars (No.BK20220054)。
文摘Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
文摘This article provides an overview of underwater sound-absorbing materials mainly applied with polyurethane matrix.It mainly elaborates on the underwater sound mecha-nism,commonly used underwater sound-absorbing materials and structures,as well as new underwater sound-absorbing material structures derived from local resonance pho-nonic crystals,such as phononic crystals,local resonance phonon wood piles,and meta-material sound-absorbing structures.This provides a broader development space and direction for the future development of underwater sound-absorbing materials.
基金Basic Research Program of Ministry of Industry and Information Technology of China(Grant No.B2420133003)National Natural Science Foundation of China(Grant Nos.51779060,51679054)
文摘The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV.
基金National Natural Science Foundation of China(Nos.11847069,11847127)Science Foundation of North University of China(No.XJJ20180030)。
文摘For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.
基金financially supported by the Research Fund for the Visiting Scholar Program by the China Scholarship Council(Grant No.2011631504)the Fundamental Research Funds for the Central Universities(Grant No.201112G020)+1 种基金the National Natural Science Foundation of China(Grant No.41176032)China Scholarship Council
文摘In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.
基金supported by the National Natural Science Foundation of China(61101205)the Natural Science Foundation of Hubei Province of China(2009CDB337)the Natural Science Foundation of Naval University of Engineering(HGDQNJJ13019)
文摘Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.