Acoustic wave time reversal self-focusing in underwater waveguide is studied. The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinite fluid medium and a shallow fluid layer ...Acoustic wave time reversal self-focusing in underwater waveguide is studied. The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinite fluid medium and a shallow fluid layer placed on a hard half-infinite solid medium, respectively. The ray approach method is adopted to study the far field of the acoustic field in theory, and the ultrasonic experiments have been carried out in laboratory to model the underwater waveguide. It is shown by theoretical and experimental results that the focusing gain can be improved by 12 dB or more.展开更多
The study of wave guide invariant in underwater acoustics is one of attracted topics in recent 30 years. The interferences of direct wave and reflect wave from sea surface and sea bottom of underwater target radiated ...The study of wave guide invariant in underwater acoustics is one of attracted topics in recent 30 years. The interferences of direct wave and reflect wave from sea surface and sea bottom of underwater target radiated noise inherent the information of target distance. Extraction of these distance information will provide a possible new way in passive ranging for underwater target. The theoretical analysis and the results of at sea experiments show that the LOFAR (Low Frequency Analysis Record) figure inherently contains the range and moving information of passive acoustic sources, even in the situation that the receiver is only one single hydrophone. The theoretical analysis of extraction of target distance information by using wave guide invariant is presented in this paper. It is shown that, based on the interference striation pattern of target, the hydrophone array system is possible to extract the distance information with quite high array gain. Although the mathematical constrain conditions in forming interference striation pattern are different for individual array element, but it is proved that the differences of time delays between array elements can be used in compensation of beamforming. The theoretical analysis, system simulation and some results of at sea experiment show a new way in passive ranging and target recognition.展开更多
The UWA channel is characterized as a time-dispersive rapidly fading channel, which in addition exhibits Doppler instabilities and limited bandwidth. To eliminate inter- symbol interference caused by multipath propaga...The UWA channel is characterized as a time-dispersive rapidly fading channel, which in addition exhibits Doppler instabilities and limited bandwidth. To eliminate inter- symbol interference caused by multipath propagation, spatial diversity equalization is the main technical means. The paper combines the passive phase conjugation and spatial processing to maximize the output array gain. It uses signal-to-noise-plus-interference to evaluate the quality of signals received at different channels. The amplitude of signal is weighted using Sigmoid function. Second order PLL can trace the phase variation caused by channel, so the signal can be accumulated in the same phase. The signals received at different channels need to be normal- ized. It adopts fractional-decision feedback diversity equalizer (FDFDE) and achieves diversity equalization by using different channel weighted coefficients. The simulation and lake trial data processing results show that, the optimized diversity receiving equalization algorithm can im- prove communication system's ability in tracking the change of underwater acoustic channel, offset the impact of multipath and noise and improve the performance of communication system. The performance of the communication receiving system is better than that of the equal gain combination. At the same time, the bit error rate (BER) reduces 1.8%.展开更多
The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion...The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion analysis is a nonlinear and multiextremal global optimization problem, so most classical estimation methods often lead the solution to convergence to one of the local extremes other than the global extreme, especially, when the noise of target bearing observation is added. In this paper we propose to use the Generalized Least Square method on the rough estimation of target motion parameters, and then use the Sequential Uniform Design method to gain a more precise estimation on the bases of rough estimation.The latter ensures that the result convergences to the global extreme. The algorithm based on the above two methods is profitable for the bearings-only target motion analysis even under conditions of large bearing observation error.展开更多
A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and te...A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented展开更多
Based on robust control design method,a variable structure guidance method is proposed for autonomous underwater vehicle(AUV) during the guiding course with terminal impact angle constraint.Considering the intercept g...Based on robust control design method,a variable structure guidance method is proposed for autonomous underwater vehicle(AUV) during the guiding course with terminal impact angle constraint.Considering the intercept geometry,a sliding mode controller is proposed for controlling the hne of sight angle rate and the impact angle,based on the principle which controls the line of sight angle rate to approach zero and the terminal angle to approach the expected value more quickly as the distance decreases.Simulation results show that,with the application of the proposed method,small miss distance is achieved and the expected impact angle is reached.In addition,the system is robust to the target maneuvering.展开更多
An iteration method for correcting the target coordinates determined by a locating system with a Cartesian array is reported. Under the complex hydrological condition, the method can give the target position not only ...An iteration method for correcting the target coordinates determined by a locating system with a Cartesian array is reported. Under the complex hydrological condition, the method can give the target position not only accurately but also quickly. The preliminary experimental results show that the correction is effective. An application of the method has been completed.展开更多
基金This work was supported by the National Natural Science Foundation of China (19634050, 10134020).
文摘Acoustic wave time reversal self-focusing in underwater waveguide is studied. The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinite fluid medium and a shallow fluid layer placed on a hard half-infinite solid medium, respectively. The ray approach method is adopted to study the far field of the acoustic field in theory, and the ultrasonic experiments have been carried out in laboratory to model the underwater waveguide. It is shown by theoretical and experimental results that the focusing gain can be improved by 12 dB or more.
文摘The study of wave guide invariant in underwater acoustics is one of attracted topics in recent 30 years. The interferences of direct wave and reflect wave from sea surface and sea bottom of underwater target radiated noise inherent the information of target distance. Extraction of these distance information will provide a possible new way in passive ranging for underwater target. The theoretical analysis and the results of at sea experiments show that the LOFAR (Low Frequency Analysis Record) figure inherently contains the range and moving information of passive acoustic sources, even in the situation that the receiver is only one single hydrophone. The theoretical analysis of extraction of target distance information by using wave guide invariant is presented in this paper. It is shown that, based on the interference striation pattern of target, the hydrophone array system is possible to extract the distance information with quite high array gain. Although the mathematical constrain conditions in forming interference striation pattern are different for individual array element, but it is proved that the differences of time delays between array elements can be used in compensation of beamforming. The theoretical analysis, system simulation and some results of at sea experiment show a new way in passive ranging and target recognition.
基金supported by National Natural Science Foundation of China(61531018)
文摘The UWA channel is characterized as a time-dispersive rapidly fading channel, which in addition exhibits Doppler instabilities and limited bandwidth. To eliminate inter- symbol interference caused by multipath propagation, spatial diversity equalization is the main technical means. The paper combines the passive phase conjugation and spatial processing to maximize the output array gain. It uses signal-to-noise-plus-interference to evaluate the quality of signals received at different channels. The amplitude of signal is weighted using Sigmoid function. Second order PLL can trace the phase variation caused by channel, so the signal can be accumulated in the same phase. The signals received at different channels need to be normal- ized. It adopts fractional-decision feedback diversity equalizer (FDFDE) and achieves diversity equalization by using different channel weighted coefficients. The simulation and lake trial data processing results show that, the optimized diversity receiving equalization algorithm can im- prove communication system's ability in tracking the change of underwater acoustic channel, offset the impact of multipath and noise and improve the performance of communication system. The performance of the communication receiving system is better than that of the equal gain combination. At the same time, the bit error rate (BER) reduces 1.8%.
文摘The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion analysis is a nonlinear and multiextremal global optimization problem, so most classical estimation methods often lead the solution to convergence to one of the local extremes other than the global extreme, especially, when the noise of target bearing observation is added. In this paper we propose to use the Generalized Least Square method on the rough estimation of target motion parameters, and then use the Sequential Uniform Design method to gain a more precise estimation on the bases of rough estimation.The latter ensures that the result convergences to the global extreme. The algorithm based on the above two methods is profitable for the bearings-only target motion analysis even under conditions of large bearing observation error.
文摘A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented
基金supported by the National Natural Science Foundation of China(61431020,61571434)
文摘Based on robust control design method,a variable structure guidance method is proposed for autonomous underwater vehicle(AUV) during the guiding course with terminal impact angle constraint.Considering the intercept geometry,a sliding mode controller is proposed for controlling the hne of sight angle rate and the impact angle,based on the principle which controls the line of sight angle rate to approach zero and the terminal angle to approach the expected value more quickly as the distance decreases.Simulation results show that,with the application of the proposed method,small miss distance is achieved and the expected impact angle is reached.In addition,the system is robust to the target maneuvering.
文摘An iteration method for correcting the target coordinates determined by a locating system with a Cartesian array is reported. Under the complex hydrological condition, the method can give the target position not only accurately but also quickly. The preliminary experimental results show that the correction is effective. An application of the method has been completed.