The correlation of ambient noise with wind speed,and the depth dependence of ambient noise are both investigated,where the ocean noise data were recorded by a vertical line array in the northern South China Sea.It is ...The correlation of ambient noise with wind speed,and the depth dependence of ambient noise are both investigated,where the ocean noise data were recorded by a vertical line array in the northern South China Sea.It is shown that the correlation coefficients increase with increasing hydrophone depth during typhoon periods when the frequency≥250 Hz,which opposes the generally accepted knowledge that the correlation coefficients of noise level and wind speed decrease with increasing depth during non-typhoon periods.Particularly at frequencies of 250 Hz,315 Hz and 400 Hz,the correlation coefficients increase by more than 0.05 at depths ranging from 155 m to 875 m.At the three frequencies,the average noise levels also increase with increasing depth during typhoon periods.It is suggested that these differences are attributed to the wind-generated noise in shallow waters and the effect of"downslope enhancement"to sound propagation.During typhoon periods,the surf breaking and surf beat upon the shores and reefs are strengthened,and the source levels are increased.The wind-generated noise in shallow waters interacts with the downslope sea floor,with the noise-depth distribution changed by a"downslope enhancement"effect promoting noise propagation.展开更多
We present a typhoon-generated noise model with which the noise intensity during typhoons can be estimated accurately. The model is verified through experimental study, and the simulation results agree reasonably with...We present a typhoon-generated noise model with which the noise intensity during typhoons can be estimated accurately. The model is verified through experimental study, and the simulation results agree reasonably with the experimental data. The measured noise intensity is approximately proportional to the cube of the local wind speed.展开更多
The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise ...The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise sources to the radiated noise of a submarine were compared and analyzed, and emphasis was put on the original source, production mechanism, and their correlative characteristics. On the basis of analysis on underwater tracking and pass through characteristics of the target submarine, the double-peak phenomenon was reasonably interpreted. Furthermore, the correctness of the theoretical interpretation was verified adequately in real submarine tests. The double-peak phenomenon indicates that the space distributing character on submarine radiated noise are both asymmetrical with time and space, whereas that is provided with directivity. Studying the double-peak phenomenon in depth has important reference value and meaning in engineering practice for understanding the underwater radiated noise field of submarines.展开更多
An important issue for deep learning models is the acquisition of training of data.Without abundant data from a real production environment for training,deep learning models would not be as widely used as they are tod...An important issue for deep learning models is the acquisition of training of data.Without abundant data from a real production environment for training,deep learning models would not be as widely used as they are today.However,the cost of obtaining abundant real-world environment is high,especially for underwater environments.It is more straightforward to simulate data that is closed to that from real environment.In this paper,a simple and easy symmetric learning data augmentation model(SLDAM)is proposed for underwater target radiate-noise data expansion and generation.The SLDAM,taking the optimal classifier of an initial dataset as the discriminator,makes use of the structure of the classifier to construct a symmetric generator based on antagonistic generation.It generates data similar to the initial dataset that can be used to supplement training data sets.This model has taken into consideration feature loss and sample loss function in model training,and is able to reduce the dependence of the generation and expansion on the feature set.We verified that the SLDAM is able to data expansion with low calculation complexity.Our results showed that the SLDAM is able to generate new data without compromising data recognition accuracy,for practical application in a production environment.展开更多
Shipping traffic is one of the largest contributors to anthropogenic noise in the ocean. Noise generated by merchant ships elevates natural occurring ambient noise level by 20-30 dB in many areas of the world's ocean...Shipping traffic is one of the largest contributors to anthropogenic noise in the ocean. Noise generated by merchant ships elevates natural occurring ambient noise level by 20-30 dB in many areas of the world's ocean. In order to model the contributions of the noise generated by merchant ships to underwater ambient noise level correctly, a database that consists of the source levels as a function of frequency for different types of ships is essential. This paper describes the conceptual design, with an emphasis on the characteristics of shipping noise as sound sources, of a marine noise database. It was developed for providing necessary parameters for underwater ambient noise modelling. The parameters relevant to shipping noise modelling are organized in two catalogues: (l) source-receiver geometry related parameters, namely the coordinates of the ships at a given time period, as well as the sizes/types of the ships from which the noise source depths may be derived, and (2) acoustically relevant parameters, i.e., the acoustic SLs (source levels) at given frequencies. An example is presented here to demonstrate the efficacy of this database. The study area is a 117 × 55 km2 region off the coast of La Spezia, Italy, in the Mediterranean Sea.展开更多
Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.Howeve...Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.However,hydrodynamic performances should also be considered before a decision to use these propellers is made.This study investigates the trade-off between hydrodynamic and hydroacoustic performances by comparing conventional and highly skewed Seiun Maru marine propellers for a noncavitating case.Many papers in the literature focus solely on hydroacoustic calculations for the open-water case.However,propulsive characteristics are significantly different when propeller-hull interactions take place.Changes in propulsion performance also reflect on the hydroacoustic performances of the propeller.In this study,propeller-hull interactions were considered to calculate the noise spectra.Rather than solving the full case,which is computationally demanding,an indirect approach was adopted;axial velocities from the nominal ship wake were introduced as the inlet condition of the numerical approach.A hybrid method based on the acoustic analogy was used in coupling computational fluid dynamics techniques with acoustic propagation methods,implementing the Ffowcs Williams-Hawkings(FW-H)equation.The hydrodynamic performances of both propellers were presented as a preliminary study.Propeller-hull interactions were included in calculations after observing good accordance between our results,experiments,and quasi-continuous method for the open-water case.With the use of the time-dependent flow field data of the propeller behind a nonuniform ship wake as an input,simulation results were used to solve the FW-H equation to extract acoustic pressure and sound pressure levels for several hydrophones located in the near field.Noise spectra results confirm that the highest values of the sound pressure levels are in the low-frequency range and the first harmonics calculated by the present method are in good accordance with the theoretical values.Results also show that a highly skewed propeller generates less noise even in noncavitating cases despite a small reduction in hydrodynamic efficiency.展开更多
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by...Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a - 2.39 power-law sealing with radius for r 〉 0. 8 mm, and a- 1.11 power law for r 〈0.8 mm.展开更多
The carrier frequency offset(CFO)and impulse noise always affect the performance of underwater acoustic communication_systems.The CFO and impulse noise could be estimated by using the null subcarriers to cancel the ...The carrier frequency offset(CFO)and impulse noise always affect the performance of underwater acoustic communication_systems.The CFO and impulse noise could be estimated by using the null subcarriers to cancel the effects of the two types of interference.The null subcarriers estimation methods include optimal separate estimation and joint estimation.The separate estimation firstly estimates the CFO value and then estimates the impulse noise value.However,the CFO and impulse noise always affect each other when either of them is estimated separately.The performance could be improved by using the joint estimation.The results of simulations and experiments have showed that these two optimization methods have good performance and the joint estimation has better performance than the separate estimation method.There is 3 dB performance gain at the BER value of 10^(-2)when using the joint estimation method.Thus these methods could improve the system robustness by using the CFO compensation and impulse noise suppression.展开更多
Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this p...Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this paper,a novel signal de-noising technique is proposed using S-transform.From the time-frequency representation,de-noising is performed using soft thresholding with universal threshold estimation which is then reconstructed.The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore of Johor in Malaysia with the use of broadband hydrophones.The comparison is made with the more conventionally used wavelet transform de-noising method.Two types of signals are evaluated:fixed frequency signals and time-varying signals.The results demonstrate that the proposed method shows better signal to noise ratio(SNR)by 4 dB and lower root mean square error(RMSE)by 3 dB achieved at the Nyquist sampling frequency compared to the previously proposed de-noising method like wavelet transform.展开更多
Signal processing in phase space based on nonlinear dynamics theory is a new method for underwater acoustic signal processing. One key problem when analyzing actual acoustic signal in phase space is how to reduce the ...Signal processing in phase space based on nonlinear dynamics theory is a new method for underwater acoustic signal processing. One key problem when analyzing actual acoustic signal in phase space is how to reduce the noise and lower the embedding dimen- sion. In this paper, local-geometric-projection method is applied to obtain fow dimensional element from various target radiating noise and the derived phase portraits show obviously low dimensional attractors. Furthermore, attractor dimension and cross prediction error are used for classification. It concludes that combining these features representing the geometric and dynamical properties respectively shows effects in target classification.展开更多
The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound...The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.展开更多
This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode...This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode of the scientific research ship is calculated.A combination of finite element and boundary element methods is used to analyze the spectral features of ship low-frequency URN.The URN source is comprehensively analyzed,the vibration energy is considered the basic parameter to describe the vibration,and the medium-and high-frequency URN of the ship are calculated using the statistical energy analysis.To obtain the full frequency-band URN of the ship,the risk position of exceeding the standard is determined,and the contribution of each main noise source in the ship to the URN is analyzed.The URN level of the ship is comprehensively measured in the free navigation state.The accuracy of the URN control evaluation model,and the method of the ship are verified.The data support for the ship to apply for the classification society certificate provides a scheme reference for the URN control of other scientific research ship in the future.展开更多
Local-linear-prediction in phase space is performed for the underwater acoustic target radiated noise. Relation curve of average prediction error versus neighboring points' number is calculated. The result is used...Local-linear-prediction in phase space is performed for the underwater acoustic target radiated noise. Relation curve of average prediction error versus neighboring points' number is calculated. The result is used in judging the nonlinearity of radiated noise time series, and obtaining the appropriate form and coefficients of predicting model. The line and continuous spectral component are predicted respectively. Choice of some model parameters minimizing the prediction error is also discussed.展开更多
The recognition rate of the auditory periphery features decreases when the model is used to identify underwater targets in practice. To solve this problem, an improved method based on Gammatone filter bank is proposed...The recognition rate of the auditory periphery features decreases when the model is used to identify underwater targets in practice. To solve this problem, an improved method based on Gammatone filter bank is proposed. Firstly, after the reason of the decreasing of the recognition results is analyzed, the mechanism of multichannel data acquisition in acoustic engineering may narrow down signal frequency range, which leads to time-frequency features distortion. Secondly, the Gammatone filter bank is implemented to simulate frequency decom- position characteristics of human ear basilar membrane. Since the class information of the underwater noise signal is mostly contained in low frequency range, the auditory features of the conventional model are interpolated and the channel number of the filter bank and the central frequency of each frequency band are adjusted accordingly to obtain a 27-dimensional feature vector of the narrow-band target signal. The adjusted model may reflect the target's time- frequency feature more precisely. Finally, the performance of the auditory features is tested by a Neural Network classifier. The experiment results show that the modified auditory model is more effective than the conventional ones. The major information contained in broadband signals is reserved and the classification ability for real targets is further enhanced. The recog- nition results are increased from 82.59% to 88.80%. The modified auditory features effectively improve the recognition rate for underwater target radiated noise signals.展开更多
The octavolateralis systems of fishes include the vestibular,auditory,lateral line and electrosensory systems.They are united by common developmental and neuro-computational features,including hair cell sensors and co...The octavolateralis systems of fishes include the vestibular,auditory,lateral line and electrosensory systems.They are united by common developmental and neuro-computational features,including hair cell sensors and computations based on cross-neuron analyses of differential hair cell stimulation patterns.These systems also all use both spectral and temporal filters to separate signals from each other and from noise,and the distributed senses(lateral line and electroreception)add spatial filters as well.Like all sensory systems,these sensors must provide the animal with guidance for adaptive behavior within a sensory scene composed of multiple stimuli and varying levels of ambient noise,including that created by human activities.In the extreme,anthropogenic activities impact the octavolateralis systems by destroying or degrading the habitats that provide ecological resources and sensory inputs.At slightly lesser levels of effect,anthropogenic pollutants can be damaging to fish tissues,with sensory organs often the most vulnerable.The exposed sensory cells of the lateral line and electrosensory systems are especially sensitive to aquatic pollution.At still lesser levels of impact,anthropogenic activities can act as both acute and chronic stressors,activating hormonal changes that may affect behavioral and sensory function.Finally,human activities are now a nearly ubiquitous presence in aquatic habitats,often with no obvious effects on the animals exposed to them.Ship noise,indigenous and industrial fishing techniques,and all the ancillary noises of human civilization form a major part of the soundscape of fishes.How fish use these new sources of information about their habitat is a new and burgeoning field of study.展开更多
The tip vortex cavitation(TVC) noise of marine propellers is of interest due to the environmental impacts from commercial ships as well as for the survivability of naval ships. Due to complicated flow and noise fiel...The tip vortex cavitation(TVC) noise of marine propellers is of interest due to the environmental impacts from commercial ships as well as for the survivability of naval ships. Due to complicated flow and noise field around a marine propeller, a theoretical approach to the estimation of TVC noise is practically unrealizable. Thus, estimation of prototype TVC noise level is realized through extrapolation of the model TVC noise level measured in a cavitation tunnel. In this study, for the prediction of prototype TVC noise level from a model test, a novel scaling law reflecting the physical basis of TVC is derived from the Rayleigh-Plesset equation, the Rankine vortex model, the lifting surface theory, and other physical assumptions. Model and prototype noise data were provided by Samsung Heavy Industries(SHI) for verification. In applying the novel scaling law, similitude of the spectra of nuclei is applied to assume the same nuclei distribution in the tip vortex line of the model and the prototype. It was found that the prototype TVC noise level predicted by the novel scaling law has better agreement with the prototype TVC noise measurement than the prototype TVC noise level predicted by the modified ITTC noise estimation rule.展开更多
A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method a...A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method are validated.Computational Fluid Dynamics (CFD),Finite Element Method (FEM) and RIA are used to predict the propeller excited underwater noise of the submarine hull structure.Firstly the propeller and submarine's flows are independently validated,then the self propulsion of the "submarine+propeller" system is simulated via CFD and the balanced point of the system is determined as well as the self propulsion factors.Secondly,the transient response of the "submarine+ propeller" system is analyzed at the balanced point,and the propeller thrust and torque excitations are calculated.Thirdly the thrust and the torque excitations of the propeller are loaded on the submarine,respectively,to calculate the acoustic response,and the sound power and the main peak frequencies are obtained.Results show that:(1) the thrust mainly excites the submarine axial mode and the high frequency area appears at the two conical-type ends,while the torque mainly excites the circumferential mode and the high frequency area appears at the broadside of the cylindrical section,but with rather smaller sound power and radiation efficiency than the former,(2) the main sound source appears at BPF and 2BPF and comes from the harmonic propeller excitations.So,the main attention should be paid on the thrust excitation control for the sound reduction of the propeller excited submarine structure.展开更多
Tip vortex cavitation noise of marine propeller became primary concems to reduce hazardous environmental impacts from commercial ship or to keep the underwater surveillance of naval ships. The investigations of the ti...Tip vortex cavitation noise of marine propeller became primary concems to reduce hazardous environmental impacts from commercial ship or to keep the underwater surveillance of naval ships. The investigations of the tip vortex and its induced noise are normally conducted through the model test in a water cavitation tunnel. However the Reynolds number of model-test is much smaller than that of the full-scale, which subsequently results in the difference of tip vortex cavitation inception. Hence, the scaling law between model- and full-scales needs to be identified prior to the prediction and assessment of propeller noise in full scale. From previous researches, it is generally known that the incipient caivtation number of tip vortex can be represented as a power of the Reynolds number. However, the power exponent for scaling, which is the main focus of this research, has not been clearly studied yet. This paper deals with the estimation of scaling exponent based on tip vortex cavitation inception test in both full- and model-scale ships. Acoustical measurements as well as several kind of signal processing technique for an inception criterion suggest the scaling exponent as 0.30. The scaling value proposed in this study shows slight difference to the one of most recent research. Besides, extrapolation of model-ship noise measurement using the proposed one predicts the full-scale noise measurement with an acceptable discrepancy.展开更多
基金The National Natural Science Foundation of China under contract No.41606116the Natural Science Foundation of Fujian Province of China under contract No.2016J01019the National Key R&D Program of China under contract No.2018YFC1405903。
文摘The correlation of ambient noise with wind speed,and the depth dependence of ambient noise are both investigated,where the ocean noise data were recorded by a vertical line array in the northern South China Sea.It is shown that the correlation coefficients increase with increasing hydrophone depth during typhoon periods when the frequency≥250 Hz,which opposes the generally accepted knowledge that the correlation coefficients of noise level and wind speed decrease with increasing depth during non-typhoon periods.Particularly at frequencies of 250 Hz,315 Hz and 400 Hz,the correlation coefficients increase by more than 0.05 at depths ranging from 155 m to 875 m.At the three frequencies,the average noise levels also increase with increasing depth during typhoon periods.It is suggested that these differences are attributed to the wind-generated noise in shallow waters and the effect of"downslope enhancement"to sound propagation.During typhoon periods,the surf breaking and surf beat upon the shores and reefs are strengthened,and the source levels are increased.The wind-generated noise in shallow waters interacts with the downslope sea floor,with the noise-depth distribution changed by a"downslope enhancement"effect promoting noise propagation.
基金Supported by the National Natural Science Foundation of China under Grant No 11125420
文摘We present a typhoon-generated noise model with which the noise intensity during typhoons can be estimated accurately. The model is verified through experimental study, and the simulation results agree reasonably with the experimental data. The measured noise intensity is approximately proportional to the cube of the local wind speed.
基金Supported by the Navy Equipment Advanced Research Project under Grant No. 40113070203
文摘The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise sources to the radiated noise of a submarine were compared and analyzed, and emphasis was put on the original source, production mechanism, and their correlative characteristics. On the basis of analysis on underwater tracking and pass through characteristics of the target submarine, the double-peak phenomenon was reasonably interpreted. Furthermore, the correctness of the theoretical interpretation was verified adequately in real submarine tests. The double-peak phenomenon indicates that the space distributing character on submarine radiated noise are both asymmetrical with time and space, whereas that is provided with directivity. Studying the double-peak phenomenon in depth has important reference value and meaning in engineering practice for understanding the underwater radiated noise field of submarines.
基金This work was funded by the National Natural Science Foundation of China under Grant(No.61772152 and No.61502037)the Basic Research Project(No.JCKY2016206B001,JCKY2014206C002 and JCKY2017604C010)the Technical Foundation Project(No.JSQB2017206C002).
文摘An important issue for deep learning models is the acquisition of training of data.Without abundant data from a real production environment for training,deep learning models would not be as widely used as they are today.However,the cost of obtaining abundant real-world environment is high,especially for underwater environments.It is more straightforward to simulate data that is closed to that from real environment.In this paper,a simple and easy symmetric learning data augmentation model(SLDAM)is proposed for underwater target radiate-noise data expansion and generation.The SLDAM,taking the optimal classifier of an initial dataset as the discriminator,makes use of the structure of the classifier to construct a symmetric generator based on antagonistic generation.It generates data similar to the initial dataset that can be used to supplement training data sets.This model has taken into consideration feature loss and sample loss function in model training,and is able to reduce the dependence of the generation and expansion on the feature set.We verified that the SLDAM is able to data expansion with low calculation complexity.Our results showed that the SLDAM is able to generate new data without compromising data recognition accuracy,for practical application in a production environment.
文摘Shipping traffic is one of the largest contributors to anthropogenic noise in the ocean. Noise generated by merchant ships elevates natural occurring ambient noise level by 20-30 dB in many areas of the world's ocean. In order to model the contributions of the noise generated by merchant ships to underwater ambient noise level correctly, a database that consists of the source levels as a function of frequency for different types of ships is essential. This paper describes the conceptual design, with an emphasis on the characteristics of shipping noise as sound sources, of a marine noise database. It was developed for providing necessary parameters for underwater ambient noise modelling. The parameters relevant to shipping noise modelling are organized in two catalogues: (l) source-receiver geometry related parameters, namely the coordinates of the ships at a given time period, as well as the sizes/types of the ships from which the noise source depths may be derived, and (2) acoustically relevant parameters, i.e., the acoustic SLs (source levels) at given frequencies. An example is presented here to demonstrate the efficacy of this database. The study area is a 117 × 55 km2 region off the coast of La Spezia, Italy, in the Mediterranean Sea.
基金The third author acknowledges the financial support from the Scientific and Technological Research Council of Turkey(TUBITAK),Project ID:218 M372.
文摘Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.However,hydrodynamic performances should also be considered before a decision to use these propellers is made.This study investigates the trade-off between hydrodynamic and hydroacoustic performances by comparing conventional and highly skewed Seiun Maru marine propellers for a noncavitating case.Many papers in the literature focus solely on hydroacoustic calculations for the open-water case.However,propulsive characteristics are significantly different when propeller-hull interactions take place.Changes in propulsion performance also reflect on the hydroacoustic performances of the propeller.In this study,propeller-hull interactions were considered to calculate the noise spectra.Rather than solving the full case,which is computationally demanding,an indirect approach was adopted;axial velocities from the nominal ship wake were introduced as the inlet condition of the numerical approach.A hybrid method based on the acoustic analogy was used in coupling computational fluid dynamics techniques with acoustic propagation methods,implementing the Ffowcs Williams-Hawkings(FW-H)equation.The hydrodynamic performances of both propellers were presented as a preliminary study.Propeller-hull interactions were included in calculations after observing good accordance between our results,experiments,and quasi-continuous method for the open-water case.With the use of the time-dependent flow field data of the propeller behind a nonuniform ship wake as an input,simulation results were used to solve the FW-H equation to extract acoustic pressure and sound pressure levels for several hydrophones located in the near field.Noise spectra results confirm that the highest values of the sound pressure levels are in the low-frequency range and the first harmonics calculated by the present method are in good accordance with the theoretical values.Results also show that a highly skewed propeller generates less noise even in noncavitating cases despite a small reduction in hydrodynamic efficiency.
文摘Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a - 2.39 power-law sealing with radius for r 〉 0. 8 mm, and a- 1.11 power law for r 〈0.8 mm.
基金supported by the Reasearch Fund for the Visiting Scholar Program by the China Scholarship Council(2011631504)The U.S.Science Foundation(CNS-1205665)+1 种基金the Fundamental Research Funds for the Central Universities(201112G020,201212G012)the National Natural Science Foundation of China(41176032)
文摘The carrier frequency offset(CFO)and impulse noise always affect the performance of underwater acoustic communication_systems.The CFO and impulse noise could be estimated by using the null subcarriers to cancel the effects of the two types of interference.The null subcarriers estimation methods include optimal separate estimation and joint estimation.The separate estimation firstly estimates the CFO value and then estimates the impulse noise value.However,the CFO and impulse noise always affect each other when either of them is estimated separately.The performance could be improved by using the joint estimation.The results of simulations and experiments have showed that these two optimization methods have good performance and the joint estimation has better performance than the separate estimation method.There is 3 dB performance gain at the BER value of 10^(-2)when using the joint estimation method.Thus these methods could improve the system robustness by using the CFO compensation and impulse noise suppression.
基金The authors would like to thank the Universiti Teknologi Malaysia(UTM)and Ministry of Higher Education(MOHE)Malaysia for supporting this work.
文摘Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this paper,a novel signal de-noising technique is proposed using S-transform.From the time-frequency representation,de-noising is performed using soft thresholding with universal threshold estimation which is then reconstructed.The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore of Johor in Malaysia with the use of broadband hydrophones.The comparison is made with the more conventionally used wavelet transform de-noising method.Two types of signals are evaluated:fixed frequency signals and time-varying signals.The results demonstrate that the proposed method shows better signal to noise ratio(SNR)by 4 dB and lower root mean square error(RMSE)by 3 dB achieved at the Nyquist sampling frequency compared to the previously proposed de-noising method like wavelet transform.
文摘Signal processing in phase space based on nonlinear dynamics theory is a new method for underwater acoustic signal processing. One key problem when analyzing actual acoustic signal in phase space is how to reduce the noise and lower the embedding dimen- sion. In this paper, local-geometric-projection method is applied to obtain fow dimensional element from various target radiating noise and the derived phase portraits show obviously low dimensional attractors. Furthermore, attractor dimension and cross prediction error are used for classification. It concludes that combining these features representing the geometric and dynamical properties respectively shows effects in target classification.
基金supported by the National Natural Science Foundation of China(11704345)the Key Laboratory of Science and Technology for National Defence Foundation(9140C290304140C29133)
文摘The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.
基金The National Key R&D Plan(Grant No.2016YFC03000704)National Key R&D Plan(Grant No.2018YFC03009202).
文摘This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode of the scientific research ship is calculated.A combination of finite element and boundary element methods is used to analyze the spectral features of ship low-frequency URN.The URN source is comprehensively analyzed,the vibration energy is considered the basic parameter to describe the vibration,and the medium-and high-frequency URN of the ship are calculated using the statistical energy analysis.To obtain the full frequency-band URN of the ship,the risk position of exceeding the standard is determined,and the contribution of each main noise source in the ship to the URN is analyzed.The URN level of the ship is comprehensively measured in the free navigation state.The accuracy of the URN control evaluation model,and the method of the ship are verified.The data support for the ship to apply for the classification society certificate provides a scheme reference for the URN control of other scientific research ship in the future.
基金The work was supported by the fund (2000JS24.4.1) from the State Key Lab on Ocean Acoustics andthe research fund of Ship Industry Fundamental Research.
文摘Local-linear-prediction in phase space is performed for the underwater acoustic target radiated noise. Relation curve of average prediction error versus neighboring points' number is calculated. The result is used in judging the nonlinearity of radiated noise time series, and obtaining the appropriate form and coefficients of predicting model. The line and continuous spectral component are predicted respectively. Choice of some model parameters minimizing the prediction error is also discussed.
基金supported by the Chinese Defense Advance Research Program of Basic Science and Technology(51303020307-8,41416040401)
文摘The recognition rate of the auditory periphery features decreases when the model is used to identify underwater targets in practice. To solve this problem, an improved method based on Gammatone filter bank is proposed. Firstly, after the reason of the decreasing of the recognition results is analyzed, the mechanism of multichannel data acquisition in acoustic engineering may narrow down signal frequency range, which leads to time-frequency features distortion. Secondly, the Gammatone filter bank is implemented to simulate frequency decom- position characteristics of human ear basilar membrane. Since the class information of the underwater noise signal is mostly contained in low frequency range, the auditory features of the conventional model are interpolated and the channel number of the filter bank and the central frequency of each frequency band are adjusted accordingly to obtain a 27-dimensional feature vector of the narrow-band target signal. The adjusted model may reflect the target's time- frequency feature more precisely. Finally, the performance of the auditory features is tested by a Neural Network classifier. The experiment results show that the modified auditory model is more effective than the conventional ones. The major information contained in broadband signals is reserved and the classification ability for real targets is further enhanced. The recog- nition results are increased from 82.59% to 88.80%. The modified auditory features effectively improve the recognition rate for underwater target radiated noise signals.
基金supported by NSF IOS 0749984 and PSC-CUNY 69494-0038.
文摘The octavolateralis systems of fishes include the vestibular,auditory,lateral line and electrosensory systems.They are united by common developmental and neuro-computational features,including hair cell sensors and computations based on cross-neuron analyses of differential hair cell stimulation patterns.These systems also all use both spectral and temporal filters to separate signals from each other and from noise,and the distributed senses(lateral line and electroreception)add spatial filters as well.Like all sensory systems,these sensors must provide the animal with guidance for adaptive behavior within a sensory scene composed of multiple stimuli and varying levels of ambient noise,including that created by human activities.In the extreme,anthropogenic activities impact the octavolateralis systems by destroying or degrading the habitats that provide ecological resources and sensory inputs.At slightly lesser levels of effect,anthropogenic pollutants can be damaging to fish tissues,with sensory organs often the most vulnerable.The exposed sensory cells of the lateral line and electrosensory systems are especially sensitive to aquatic pollution.At still lesser levels of impact,anthropogenic activities can act as both acute and chronic stressors,activating hormonal changes that may affect behavioral and sensory function.Finally,human activities are now a nearly ubiquitous presence in aquatic habitats,often with no obvious effects on the animals exposed to them.Ship noise,indigenous and industrial fishing techniques,and all the ancillary noises of human civilization form a major part of the soundscape of fishes.How fish use these new sources of information about their habitat is a new and burgeoning field of study.
文摘The tip vortex cavitation(TVC) noise of marine propellers is of interest due to the environmental impacts from commercial ships as well as for the survivability of naval ships. Due to complicated flow and noise field around a marine propeller, a theoretical approach to the estimation of TVC noise is practically unrealizable. Thus, estimation of prototype TVC noise level is realized through extrapolation of the model TVC noise level measured in a cavitation tunnel. In this study, for the prediction of prototype TVC noise level from a model test, a novel scaling law reflecting the physical basis of TVC is derived from the Rayleigh-Plesset equation, the Rankine vortex model, the lifting surface theory, and other physical assumptions. Model and prototype noise data were provided by Samsung Heavy Industries(SHI) for verification. In applying the novel scaling law, similitude of the spectra of nuclei is applied to assume the same nuclei distribution in the tip vortex line of the model and the prototype. It was found that the prototype TVC noise level predicted by the novel scaling law has better agreement with the prototype TVC noise measurement than the prototype TVC noise level predicted by the modified ITTC noise estimation rule.
文摘A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method are validated.Computational Fluid Dynamics (CFD),Finite Element Method (FEM) and RIA are used to predict the propeller excited underwater noise of the submarine hull structure.Firstly the propeller and submarine's flows are independently validated,then the self propulsion of the "submarine+propeller" system is simulated via CFD and the balanced point of the system is determined as well as the self propulsion factors.Secondly,the transient response of the "submarine+ propeller" system is analyzed at the balanced point,and the propeller thrust and torque excitations are calculated.Thirdly the thrust and the torque excitations of the propeller are loaded on the submarine,respectively,to calculate the acoustic response,and the sound power and the main peak frequencies are obtained.Results show that:(1) the thrust mainly excites the submarine axial mode and the high frequency area appears at the two conical-type ends,while the torque mainly excites the circumferential mode and the high frequency area appears at the broadside of the cylindrical section,but with rather smaller sound power and radiation efficiency than the former,(2) the main sound source appears at BPF and 2BPF and comes from the harmonic propeller excitations.So,the main attention should be paid on the thrust excitation control for the sound reduction of the propeller excited submarine structure.
文摘Tip vortex cavitation noise of marine propeller became primary concems to reduce hazardous environmental impacts from commercial ship or to keep the underwater surveillance of naval ships. The investigations of the tip vortex and its induced noise are normally conducted through the model test in a water cavitation tunnel. However the Reynolds number of model-test is much smaller than that of the full-scale, which subsequently results in the difference of tip vortex cavitation inception. Hence, the scaling law between model- and full-scales needs to be identified prior to the prediction and assessment of propeller noise in full scale. From previous researches, it is generally known that the incipient caivtation number of tip vortex can be represented as a power of the Reynolds number. However, the power exponent for scaling, which is the main focus of this research, has not been clearly studied yet. This paper deals with the estimation of scaling exponent based on tip vortex cavitation inception test in both full- and model-scale ships. Acoustical measurements as well as several kind of signal processing technique for an inception criterion suggest the scaling exponent as 0.30. The scaling value proposed in this study shows slight difference to the one of most recent research. Besides, extrapolation of model-ship noise measurement using the proposed one predicts the full-scale noise measurement with an acceptable discrepancy.