期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
HYDRODYNAMIC BEHAVIOR OF AN UNDERWATER MOVING BODY AFTER WATER ENTRY 被引量:7
1
作者 施红辉 高见卓也 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期35-44,共10页
An experimental study was conducted to investigate the water entry phenomenon. A facility was designed to carry out the tests with the entry veloci- ties of around 352 m/s. Visualization, pressure ineasurement, veloci... An experimental study was conducted to investigate the water entry phenomenon. A facility was designed to carry out the tests with the entry veloci- ties of around 352 m/s. Visualization, pressure ineasurement, velocity measurement and underwater impact test were performed to investigate the hydroballistic behav- ior of the underwater moving body, the underwater flow field, the supercavitation, etc.. This study shows that the motion of a high-speed underwater body is strongly three-dimensional and chaotic. Furthermore, it is found that the distribution of the trajectory deflection of the underwater projectile depends on the depth of water. It is also found by measuring the deformation on a witness plate submerged in water, that the impact energy of an underwater projectile is reduced as it penetrates deeper into water. 展开更多
关键词 water entry SUPERCAVITATION underwater acoustic wave underwater projectile trajectory projectile velocity
下载PDF
A numerical analysis of the influence of the cavitator's deflection angle on flow features for a free moving supercavitated vehicle
2
作者 陈鑫 鲁传敬 +1 位作者 陈瑛 曹嘉怡 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第5期697-705,共9页
When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with ... When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model is proposed to numerically simulate the flee moving phase of an underwater supercavitated vehicle under the action of the external thrust. The influence of the cavitator's deflection angle ranging from -3~ to 3~ on the cavity pattern, the hydrodynamics and the underwater trajectory is investigated. Based on computational results, several conclusions are qualitatively drawn by an analysis. The deflection angle has very little effect on the cavity pattern. When the deflection angle increases, the variation curves of the vertical linear velocity, the lift coefficient and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients will be and the higher the pitching moment coefficient becomes. At the finishing time of the free moving phase, when the deflection angle lies in the small range of -1~ - 1~, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle is less than -1° or greater than 1°, the position of the center of mass and the pitching angle change greatly. Ifa proper deflection angle of the cavitator is adopted, the underwater vehicle can navigate in a pseudo-fixed depth. 展开更多
关键词 CAVITATION MULTIPHASE underwater trajectory dynamic mesh
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部