The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo...The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.展开更多
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan...Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM.展开更多
Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor invol...Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor involved in the development of CRC,we screened the upregulated genes in tumor tissues through four datasets from an online database.The expression of reticulocalbin 1(RCN1),a Ca2+-binding protein,was upregulated in the four datasets.Based on loss-offunction experiments,the effect of RCN1 on cell viability was assessed by Cell Counting Kit-8(CCK-8)assay.The regulatory effect of RCN1 on apoptosis was evaluated through Annexin V-fluorescein 5-isothiocyanate(FITC)/propidium iodide(PI)staining assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)assay in RKO and SW480 cells.Activation of endoplasmic reticulum(ER)stress signaling pathways was confirmed by estimating the phosphorylation and expression of PRKR-like ER kinase(PERK),inositol-requiring kinase-1(IRE1),transcription factor 6(ACT6),and CCAAT/enhancer-binding protein-homologous protein(CHOP).The intracellular Ca2+homeostasis regulated by RCN1 was determined through the detection of Ca2+concentration and mitochondrial membrane potential(MMP)measurement.Moreover,whether inositol 1,4,5-trisphosphate receptor type 1(IP3R1)was involved in the regulation of RCN1 in CRC was verified through the depletion of IP3R1 in RKO cells.Results:Knockdown of RCN1 reduced cell viability and facilitated apoptosis in RKO and SW480 cells.Phosphorylation of PERK and IRE1,activation of ATF6,and upregulation of CHOP were induced by the absence of RCN1,suggesting that the unfolded protein response(UPR)was activated in CRC cells.The concentration of Ca2+in mitochondria was increased after RCN1 depletion,followed by reduction in the MMP and release of cytochrome c from mitochondria to the cytoplasm in RKO and SW480 cells.Moreover,it was demonstrated that IP3R1 mediates the effect of RCN1 on apoptosis induced by ER stress in CRC cells.The downregulation of IP3R1 restored the RCN1 loss-induced apoptosis and the increased Ca2+concentration.Conclusion:Taken together,our results confirmed that silencing of RCN1 disrupted intracellular Ca2+homeostasis and promoted cell apoptosis caused by TG-induced ER stress by regulating IP3R1 and activating the UPR signaling pathways.展开更多
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re...Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.展开更多
Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of...Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.展开更多
Pyroptosis plays an important role in hemorrhagic stroke.Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization ...Pyroptosis plays an important role in hemorrhagic stroke.Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization domain and leucine-rich repeat pyrin domain-containing protein 3(NLRP3)pathway.However,the relationship between pyroptosis and endoplasmic reticulum stress after intraventricular hemorrhage is unclear.In this study,we established a mouse model of intraventricular hemorrhage and found pyroptosis and endoplasmic reticulum stress in brain tissue.Intraperitoneal injection of the selective GPR120 agonist TUG-891 inhibited endoplasmic reticulum stress,pyroptosis,and inflammation and protected neurons.The neuroprotective effect of TUG-891 appears related to inhibition of endoplasmic reticulum stress and pyroptosis activation.展开更多
Schwann cells,the myelinating glia of the peripheral nervous system,wrap axons multiple times to build their myelin sheath.Myelin is of paramount importance for axonal integrity and fast axon potential propagation.How...Schwann cells,the myelinating glia of the peripheral nervous system,wrap axons multiple times to build their myelin sheath.Myelin is of paramount importance for axonal integrity and fast axon potential propagation.However,myelin is lacking or dysfunctional in several neuropathies including demyelinating and dysmyelinating Charcot-M arie-To oth disease.Charcot-Marie-To oth disease represents the most prevalent inherited neuropathy in humans and is classified either as axonal,demyelinating or dysmyelinating,or as intermediate.The demyelinating or dysmyelinating forms of Charcot-Marie-Tooth disease constitute the majority of the disease cases and are most frequently due to mutations in the three following myelin genes:peripheral myelin protein 22,myelin protein ze ro and gap junction beta 1(coding for Connexin 32) causing Charcot-M arie-Tooth disease type 1A,Charcot-Marie-Tooth disease type 1B,and X-linked Charcot-M arie-Tooth disease type 1,respectively.The resulting perturbation of myelin structure and function leads to axonal demyelination or dysmyelination and causes severe disabilities in affected patients.No treatment to cure or slow down the disease progression is currently available on the market,howeve r,scientific discoveries led to a better understanding of the pathomechanisms of the disease and to potential treatment strategies.In this review,we describe the features and molecular mechanisms of the three main demyelinating or dysmyelinating forms of Charcot-Marie-Tooth disease,the rodent models used in research,and the emerging therapeutic approaches to cure or counteract the progression of the disease.展开更多
The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neuro...The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neurons.In this study,we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling.We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope.Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein,phosphorylated eukaryotic translation initiation factor 2α,and caspase-12 in the endoplasmic reticulum of retinal ganglion cells.These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress.These findings represent a newly discovered mechanism that regulates how valproate protects neurons.展开更多
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and a...Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and adult onsets of the disease are known and,in both cases,astrocytes present characteristic aggregates,named Rosenthal fibers.Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner.Although the presence of aggregates suggests a proteostasis problem of the mutant forms,this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased.Additionally,several isoforms of glial fibrillary acidic protein have been described to date,while the impact of the mutations on their expression and proportion has not been exhaustively studied.Moreover,the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered,leading to functional changes that may modify the morphology,positioning,and/or the function of several organelles,in turn,impairing astrocyte normal function and subsequently affecting neurons.In particular,mitochondrial function,redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes.To study the disease and to develop putative therapeutic strategies,several experimental models have been developed,a collection that is in constant growth.The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations,together with the availability of new and more relevant experimental models,holds promise for the design and assay of novel therapeutic strategies.展开更多
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or...The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.展开更多
The endoplasmic reticulum(ER),an organelle present in various eukaryotic cells,is responsible for intracellular protein synthesis,post-translational modification,and folding and transport,as well as the regulation of ...The endoplasmic reticulum(ER),an organelle present in various eukaryotic cells,is responsible for intracellular protein synthesis,post-translational modification,and folding and transport,as well as the regulation of lipid and steroid metabolism and Ca2+homeostasis.Hypoxia,nutrient deficiency,and a low pH tumor microenvironment lead to the accumulation of misfolded or unfolded proteins in the ER,thus activating ER stress(ERS)and the unfolded protein response,and resulting in either restoration of cellular homeostasis or cell death.ERS plays a crucial role in cancer oncogenesis,progression,and response to therapies.This article reviews current studies relating ERS to ovarian cancer,the most lethal gynecologic malignancy among women globally,and discusses pharmacological agents and possible targets for therapeutic intervention.展开更多
Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical veno...Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical venous endothelial cells(HUVECs).Methods:The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting,qRT-PCR and confocal microscopy.Further,we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro.Finally,we examined the function of IRE1 in local blood vessels through animal models,Results:Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs.Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals.Conclusion:Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions.展开更多
As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becomin...As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively complex.In this paper,we employ a traffic matrix to model the tactical data link network.We propose a method that utilizes the Maximum Variance Unfolding(MVU)algorithm to conduct nonlinear dimensionality reduction analysis on high-dimensional open network traffic matrix datasets.This approach introduces novel ideas and methods for future applications,including traffic prediction and anomaly analysis in real battlefield network environments.展开更多
In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS...In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS).As a signal mechanism that mitigates ERS in eukaryotic cells,the unfolded protein response(UPR)pathway can activate cells and tissues,regulating pathological activities in various cells,and maintaining ER homeostasis.It forms the most crucial adaptive and defensive mechanism for cells.However,under the continuous influence of chemotherapy drugs,the quantity of unfolded proteins and erroneous proteins produced by tumor cells significantly increases,surpassing the normal regulatory range of UPR.Consequently,ERS fails to function properly,fostering tumor cell proliferation and the development of drug resistance.This review delves into the study of three UPR pathways(PERK,IRE1,and ATF6),elucidating the mechanisms of drug resistance and research progress in the signal transduction pathway of UPR related to cancers.It provides a profound understanding of the role and relationship between UPR and anti-tumor drugs,offering a new direction for effective clinical treatment.展开更多
基金supported by grants from the National Institutes of Health,No.NS105689(to WL)the Department of Defense through the Multiple Sclerosis Research Program,No.W81XWH-22-1-0757(to WL).
文摘The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
基金funded by the National Natural Science Foundation of China (32371341,31872674)the Scientific and Technologic Foundation of Jilin Province (20230202050NC)the Fundamental Research Funds for the Central Universities (CGZH202206)。
文摘Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM.
文摘Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor involved in the development of CRC,we screened the upregulated genes in tumor tissues through four datasets from an online database.The expression of reticulocalbin 1(RCN1),a Ca2+-binding protein,was upregulated in the four datasets.Based on loss-offunction experiments,the effect of RCN1 on cell viability was assessed by Cell Counting Kit-8(CCK-8)assay.The regulatory effect of RCN1 on apoptosis was evaluated through Annexin V-fluorescein 5-isothiocyanate(FITC)/propidium iodide(PI)staining assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)assay in RKO and SW480 cells.Activation of endoplasmic reticulum(ER)stress signaling pathways was confirmed by estimating the phosphorylation and expression of PRKR-like ER kinase(PERK),inositol-requiring kinase-1(IRE1),transcription factor 6(ACT6),and CCAAT/enhancer-binding protein-homologous protein(CHOP).The intracellular Ca2+homeostasis regulated by RCN1 was determined through the detection of Ca2+concentration and mitochondrial membrane potential(MMP)measurement.Moreover,whether inositol 1,4,5-trisphosphate receptor type 1(IP3R1)was involved in the regulation of RCN1 in CRC was verified through the depletion of IP3R1 in RKO cells.Results:Knockdown of RCN1 reduced cell viability and facilitated apoptosis in RKO and SW480 cells.Phosphorylation of PERK and IRE1,activation of ATF6,and upregulation of CHOP were induced by the absence of RCN1,suggesting that the unfolded protein response(UPR)was activated in CRC cells.The concentration of Ca2+in mitochondria was increased after RCN1 depletion,followed by reduction in the MMP and release of cytochrome c from mitochondria to the cytoplasm in RKO and SW480 cells.Moreover,it was demonstrated that IP3R1 mediates the effect of RCN1 on apoptosis induced by ER stress in CRC cells.The downregulation of IP3R1 restored the RCN1 loss-induced apoptosis and the increased Ca2+concentration.Conclusion:Taken together,our results confirmed that silencing of RCN1 disrupted intracellular Ca2+homeostasis and promoted cell apoptosis caused by TG-induced ER stress by regulating IP3R1 and activating the UPR signaling pathways.
文摘Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.
文摘Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.
文摘Pyroptosis plays an important role in hemorrhagic stroke.Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization domain and leucine-rich repeat pyrin domain-containing protein 3(NLRP3)pathway.However,the relationship between pyroptosis and endoplasmic reticulum stress after intraventricular hemorrhage is unclear.In this study,we established a mouse model of intraventricular hemorrhage and found pyroptosis and endoplasmic reticulum stress in brain tissue.Intraperitoneal injection of the selective GPR120 agonist TUG-891 inhibited endoplasmic reticulum stress,pyroptosis,and inflammation and protected neurons.The neuroprotective effect of TUG-891 appears related to inhibition of endoplasmic reticulum stress and pyroptosis activation.
基金supported by the Deutsche Forschungsgemeinshaft (to CJ)。
文摘Schwann cells,the myelinating glia of the peripheral nervous system,wrap axons multiple times to build their myelin sheath.Myelin is of paramount importance for axonal integrity and fast axon potential propagation.However,myelin is lacking or dysfunctional in several neuropathies including demyelinating and dysmyelinating Charcot-M arie-To oth disease.Charcot-Marie-To oth disease represents the most prevalent inherited neuropathy in humans and is classified either as axonal,demyelinating or dysmyelinating,or as intermediate.The demyelinating or dysmyelinating forms of Charcot-Marie-Tooth disease constitute the majority of the disease cases and are most frequently due to mutations in the three following myelin genes:peripheral myelin protein 22,myelin protein ze ro and gap junction beta 1(coding for Connexin 32) causing Charcot-M arie-Tooth disease type 1A,Charcot-Marie-Tooth disease type 1B,and X-linked Charcot-M arie-Tooth disease type 1,respectively.The resulting perturbation of myelin structure and function leads to axonal demyelination or dysmyelination and causes severe disabilities in affected patients.No treatment to cure or slow down the disease progression is currently available on the market,howeve r,scientific discoveries led to a better understanding of the pathomechanisms of the disease and to potential treatment strategies.In this review,we describe the features and molecular mechanisms of the three main demyelinating or dysmyelinating forms of Charcot-Marie-Tooth disease,the rodent models used in research,and the emerging therapeutic approaches to cure or counteract the progression of the disease.
基金supported by the National Natural Science Foundation of China,Nos.30772368(to DH),81371034(to XH)the Key Project of Natural Science Foundation of Shaanxi Province,No.2017JZ025(to DH).
文摘The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neurons.In this study,we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling.We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope.Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein,phosphorylated eukaryotic translation initiation factor 2α,and caspase-12 in the endoplasmic reticulum of retinal ganglion cells.These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress.These findings represent a newly discovered mechanism that regulates how valproate protects neurons.
基金Work at the authors’laboratories is supported by grants from"la Caixa"FoundationGrant Agreement LCF/PR/HR21/52410002+4 种基金EJP RD COFUND-EJP N°825575"Alexander"to DPS and MPAgencia Estatal de Investigacion,MICINN and ERDF Grant No.RTI2018-097624-B-I00 and PID2021-126827OB-I00 to DPSgrants from the Swedish Research Council(2017-02255)ALF Gothenburg(146051)The Swedish Society for Medical Research,Hj?rnfonden,S?derberg’s Foundations,Hagstr?mer’s Foundation Millennium,Ami?v’s Foundation,E.Jacobson’s Donation Fund,the Swedish Stroke Foundation,NanoNet COST Action(BM1002),EU FP 7 Program TargetBraln(279017)to MP。
文摘Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and adult onsets of the disease are known and,in both cases,astrocytes present characteristic aggregates,named Rosenthal fibers.Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner.Although the presence of aggregates suggests a proteostasis problem of the mutant forms,this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased.Additionally,several isoforms of glial fibrillary acidic protein have been described to date,while the impact of the mutations on their expression and proportion has not been exhaustively studied.Moreover,the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered,leading to functional changes that may modify the morphology,positioning,and/or the function of several organelles,in turn,impairing astrocyte normal function and subsequently affecting neurons.In particular,mitochondrial function,redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes.To study the disease and to develop putative therapeutic strategies,several experimental models have been developed,a collection that is in constant growth.The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations,together with the availability of new and more relevant experimental models,holds promise for the design and assay of novel therapeutic strategies.
基金supported by the National Natural science Foundation of China (No. 42127807)the Sichuan Science and Technology Program (No. 2020YJ0334)the Sichuan Science and Technology Breeding Program (No. 2022041)。
文摘The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.
基金supported by the National Natural Science Foundation of China(Grant Nos.NSF-82072876 and NSF-82002618)。
文摘The endoplasmic reticulum(ER),an organelle present in various eukaryotic cells,is responsible for intracellular protein synthesis,post-translational modification,and folding and transport,as well as the regulation of lipid and steroid metabolism and Ca2+homeostasis.Hypoxia,nutrient deficiency,and a low pH tumor microenvironment lead to the accumulation of misfolded or unfolded proteins in the ER,thus activating ER stress(ERS)and the unfolded protein response,and resulting in either restoration of cellular homeostasis or cell death.ERS plays a crucial role in cancer oncogenesis,progression,and response to therapies.This article reviews current studies relating ERS to ovarian cancer,the most lethal gynecologic malignancy among women globally,and discusses pharmacological agents and possible targets for therapeutic intervention.
基金supported by the National Natural Science Foundation of China(No.81670409).
文摘Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical venous endothelial cells(HUVECs).Methods:The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting,qRT-PCR and confocal microscopy.Further,we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro.Finally,we examined the function of IRE1 in local blood vessels through animal models,Results:Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs.Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals.Conclusion:Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions.
文摘As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively complex.In this paper,we employ a traffic matrix to model the tactical data link network.We propose a method that utilizes the Maximum Variance Unfolding(MVU)algorithm to conduct nonlinear dimensionality reduction analysis on high-dimensional open network traffic matrix datasets.This approach introduces novel ideas and methods for future applications,including traffic prediction and anomaly analysis in real battlefield network environments.
文摘In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS).As a signal mechanism that mitigates ERS in eukaryotic cells,the unfolded protein response(UPR)pathway can activate cells and tissues,regulating pathological activities in various cells,and maintaining ER homeostasis.It forms the most crucial adaptive and defensive mechanism for cells.However,under the continuous influence of chemotherapy drugs,the quantity of unfolded proteins and erroneous proteins produced by tumor cells significantly increases,surpassing the normal regulatory range of UPR.Consequently,ERS fails to function properly,fostering tumor cell proliferation and the development of drug resistance.This review delves into the study of three UPR pathways(PERK,IRE1,and ATF6),elucidating the mechanisms of drug resistance and research progress in the signal transduction pathway of UPR related to cancers.It provides a profound understanding of the role and relationship between UPR and anti-tumor drugs,offering a new direction for effective clinical treatment.