Pushover analysis and time history analysis are conducted to explore the bi-directional seismic behavior of composite steel-concrete rigid frame bridge, which is composed of RC piers and steel-concrete composite girde...Pushover analysis and time history analysis are conducted to explore the bi-directional seismic behavior of composite steel-concrete rigid frame bridge, which is composed of RC piers and steel-concrete composite girders. Both longitudinal and transverse directions excitations are investigated using OpenSees. Firstly, the applicability of pushover analysis based on the funda- mental mode is discussed. Secondly, an improved pushover analysis method considering the contribution of higher modes is proposed, and the applicability on composite rigid frame bridges under bi-directional earthquake is verified. Based on this method, an approach to predict the displacement responses of composite rigid frame bridge under random hi-directional seismic excitations by revising the elasto-plastic demand curve is also proposed. It is observed that the developed method yield a good estimate on the responses of composite rigid frame bridges under bi-directional seismic excitations.展开更多
Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias in...Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis. The former is needed for seismic hazard assessment, whereas the latter can be important for assessing structural responses under multi-directional excitations. However, a comprehensive investigation of the pseudo-spectral acceleration (PSA) and of GMPEs conditioned on different axes is currently lacking. This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane, and correlation of the PSA along the principal directions on the horizontal plane. For these, three sets of strong ground motion records, including intraplate California earthquakes, inslab Mexican earthquakes, and interface Mexican earthquakes, are used. The results indicate that one of the principal directions could be considered as quasi-vertical. By focusing on seismic excitations on the horizontal plane, the statistics of the angles between the major response axis and the major principal axis are obtained; GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component; and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.展开更多
基金the financial support provided by the National Science and Technology Support Program(No.2011BAJ09B02)the National Natural Science Foundation of China(No.51138007,51222810)
文摘Pushover analysis and time history analysis are conducted to explore the bi-directional seismic behavior of composite steel-concrete rigid frame bridge, which is composed of RC piers and steel-concrete composite girders. Both longitudinal and transverse directions excitations are investigated using OpenSees. Firstly, the applicability of pushover analysis based on the funda- mental mode is discussed. Secondly, an improved pushover analysis method considering the contribution of higher modes is proposed, and the applicability on composite rigid frame bridges under bi-directional earthquake is verified. Based on this method, an approach to predict the displacement responses of composite rigid frame bridge under random hi-directional seismic excitations by revising the elasto-plastic demand curve is also proposed. It is observed that the developed method yield a good estimate on the responses of composite rigid frame bridges under bi-directional seismic excitations.
基金Natural Science and Engineering Research Council of Canada(NSERC)
文摘Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis. The former is needed for seismic hazard assessment, whereas the latter can be important for assessing structural responses under multi-directional excitations. However, a comprehensive investigation of the pseudo-spectral acceleration (PSA) and of GMPEs conditioned on different axes is currently lacking. This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane, and correlation of the PSA along the principal directions on the horizontal plane. For these, three sets of strong ground motion records, including intraplate California earthquakes, inslab Mexican earthquakes, and interface Mexican earthquakes, are used. The results indicate that one of the principal directions could be considered as quasi-vertical. By focusing on seismic excitations on the horizontal plane, the statistics of the angles between the major response axis and the major principal axis are obtained; GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component; and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.