期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Damage Failure Analysis of Z-Pins Reinforced Composite Adhesively Bonded Single-Lap Joint
1
作者 Yinhuan Yang Manfeng Gong +1 位作者 Xiaoqun Xia Yuling Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期1239-1249,共11页
In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out byme... In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results. 展开更多
关键词 Z-pins reinforced composite adhesively bonded single-lap joints failure mode uniaxial tensile test strength prediction progressive damage
下载PDF
Effects of proton irradiation on the microstructure and mechanical properties of Amosic-3 silicon carbide minicomposites
2
作者 Chuanxin Liu Bo Chen +1 位作者 Xiaoqiang Li Yahuan Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2935-2941,共7页
One dimensional Amosic-3 silicon carbide fiber reinforced silicon carbide matrix composites(SiCf/SiC minicomposites) prepared by chemical vapor infiltration were irradiated with 2.8 Me V proton ions. The ion fluences ... One dimensional Amosic-3 silicon carbide fiber reinforced silicon carbide matrix composites(SiCf/SiC minicomposites) prepared by chemical vapor infiltration were irradiated with 2.8 Me V proton ions. The ion fluences were 1.0 × 10^17 and 1.5 × 10^17cm^-2 at room temperature and 300℃, respectively. The microstructure and mechanical properties were investigated before and after proton irradiation. Raman spectra showed no evident change in Amosic-3 fibers regardless of irradiation temperature, which is confirmed by high resolution transmission electron microscopy observation. Pyrolytic carbon interphase showed slightly expansion after 300℃ irradiation, however, no microstructure changes were observed in SiC matrix. Moreover, it can be deduced that no irradiation induced changes in mechanical properties were observed after present proton irradiation. 展开更多
关键词 SiCf/SiC minicomposites Proton irradiation uniaxial tensile test MICROSTRUCTURE Irradiation effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部