In thjs paper. bamboo fiber has been. on micro scale. investigated as a helical. multi-layered hollow cylinder, the stiffness featu res of bamboo bast fiber were compared with those of a multifilament yarn in traditio...In thjs paper. bamboo fiber has been. on micro scale. investigated as a helical. multi-layered hollow cylinder, the stiffness featu res of bamboo bast fiber were compared with those of a multifilament yarn in traditional fiber-reinforced composite materials, Moreover. a biomimetic model of the reinforce ment of fiber-reinforced composite materials was proposed by imitating the fine structure of bamboo bast fiber. The results show that the comprehensive stiffness properties of the cornplicated fine struc ture of bamboo fiber is superior over those of traditional fiber-reinforced composites.展开更多
The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and...The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and mold pressing,require multiple steps and complex tools,thus limiting the exploration of advanced sandwich structure designs.This study reports a novel multi-material additive manufacturing(AM)process that allows the single-step production of continuous fiber-reinforced polymer composite(CFRPC)sandwich structures with multiscale cellular cores.Specifically,the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs.The cellular core design spans three levels:microcellular,unit-cell,and graded structures.Sandwich structures with a diverse set of unit-cell designs,that is,rhombus,square,honeycomb,and re-entrant honeycomb,were fabricated and their flexural behaviors were studied experimentally.The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness,strength,and specific energy absorption.In addition,the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined.The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches.展开更多
Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight.The composite components are manufactured by near netsha...Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight.The composite components are manufactured by near netshape and only require finishing operations to achieve final dimensional and assembly tolerances.Milling and grinding arise as the preferred choices because of their precision processing.Nevertheless,given their laminated,anisotropic,and heterogeneous nature,these materials are considered difficult-to-machine.As undesirable results and challenging breakthroughs,the surface damage and integrity of these materials is a research hotspot with important engineering significance.This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature.First,the formation mechanisms of milling damage,including delamination,burr,and tear,are analyzed.Second,the grinding mechanisms,covering material removal mechanism,thermal mechanical behavior,surface integrity,and damage,are discussed.Third,suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies,including ultrasonic vibration-assisted machining,cryogenic cooling,minimum quantity lubrication(MQL),and tool optimization design.Ultrasonic vibration shows the greatest advantage of restraining machining force,which can be reduced by approximately 60%compared with conventional machining.Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%.MQL shows its advantages in terms of reducing friction coefficient,force,temperature,and tool wear.Finally,research gaps and future exploration directions are prospected,giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.展开更多
Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensi...Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensions of fiber-reinforced composite materials will expand explosively,bringing challenges to the efficient analysis and optimal design of structures.In this paper,the authors propose an explicit topology optimization method based on the moving morphable components for designing the fiber-reinforced material.We constrain the intersection area between components to guarantee the independence of each component and avoid the situation that one component is cut by other components.Adding the fiber orientation angle as a design variable,the method can optimize the structural layout and the fiber orientation angle concurrently under the given number of fiber layers and layer thickness.We use two classical examples to verify the feasibility and accuracy of the proposed method.The optimized results are in good agreement with the designs obtained by the 99-line code.The authors also popularize the proposed method to engineering structure.The results manifest that the proposed method has great value in engineering application.展开更多
文摘In thjs paper. bamboo fiber has been. on micro scale. investigated as a helical. multi-layered hollow cylinder, the stiffness featu res of bamboo bast fiber were compared with those of a multifilament yarn in traditional fiber-reinforced composite materials, Moreover. a biomimetic model of the reinforce ment of fiber-reinforced composite materials was proposed by imitating the fine structure of bamboo bast fiber. The results show that the comprehensive stiffness properties of the cornplicated fine struc ture of bamboo fiber is superior over those of traditional fiber-reinforced composites.
基金supported by National Natural Science Foundation of China(Grant No.52105261)Shenzhen Science and Technology Inno-vation Committee of China(Grant No.JCYJ20210324104610028)Department of Education of Guangdong Province of China(Grant No.2022ZDZX3020).
文摘The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and mold pressing,require multiple steps and complex tools,thus limiting the exploration of advanced sandwich structure designs.This study reports a novel multi-material additive manufacturing(AM)process that allows the single-step production of continuous fiber-reinforced polymer composite(CFRPC)sandwich structures with multiscale cellular cores.Specifically,the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs.The cellular core design spans three levels:microcellular,unit-cell,and graded structures.Sandwich structures with a diverse set of unit-cell designs,that is,rhombus,square,honeycomb,and re-entrant honeycomb,were fabricated and their flexural behaviors were studied experimentally.The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness,strength,and specific energy absorption.In addition,the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined.The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches.
基金the National Key R&D Program of China(Grant No.2020YFB2010500)the National Natural Science Foundation of China(Grant Nos.51975305 and 51905289)+2 种基金Shandong Natural Science Foundation,China(Grant Nos.ZR2020KE027 and ZR2020ME158)the Innovation Talent Supporting Program for Postdoctoral Fellows of Shandong Province,China(Grant No.SDBX2020012)the Major Science and Technology Innovation Engineering Projects of Shandong Province,China(Grant No.2019JZZY020111).
文摘Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight.The composite components are manufactured by near netshape and only require finishing operations to achieve final dimensional and assembly tolerances.Milling and grinding arise as the preferred choices because of their precision processing.Nevertheless,given their laminated,anisotropic,and heterogeneous nature,these materials are considered difficult-to-machine.As undesirable results and challenging breakthroughs,the surface damage and integrity of these materials is a research hotspot with important engineering significance.This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature.First,the formation mechanisms of milling damage,including delamination,burr,and tear,are analyzed.Second,the grinding mechanisms,covering material removal mechanism,thermal mechanical behavior,surface integrity,and damage,are discussed.Third,suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies,including ultrasonic vibration-assisted machining,cryogenic cooling,minimum quantity lubrication(MQL),and tool optimization design.Ultrasonic vibration shows the greatest advantage of restraining machining force,which can be reduced by approximately 60%compared with conventional machining.Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%.MQL shows its advantages in terms of reducing friction coefficient,force,temperature,and tool wear.Finally,research gaps and future exploration directions are prospected,giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.
基金supports from the National Key Research and Development Plan(2020YFB1709401)the National Natural Science Foundation of China(11872138,11702048),Dalian Young TechStar Project(2019RQ045,2019RQ069)and the Scientific Research Fund Project of Education Department of Liaoning Province(JDL2020021).
文摘Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensions of fiber-reinforced composite materials will expand explosively,bringing challenges to the efficient analysis and optimal design of structures.In this paper,the authors propose an explicit topology optimization method based on the moving morphable components for designing the fiber-reinforced material.We constrain the intersection area between components to guarantee the independence of each component and avoid the situation that one component is cut by other components.Adding the fiber orientation angle as a design variable,the method can optimize the structural layout and the fiber orientation angle concurrently under the given number of fiber layers and layer thickness.We use two classical examples to verify the feasibility and accuracy of the proposed method.The optimized results are in good agreement with the designs obtained by the 99-line code.The authors also popularize the proposed method to engineering structure.The results manifest that the proposed method has great value in engineering application.