CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-qualit...CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-quality CuIn(S,Se)2 absorber thin films. In order to figure out the influence of heat treatments on in-depth composition uniformity of CuIn(S,Se)2 thin films, two kinds of reaction temperature profiles were investigated. One process is "one step profile", referring to formation of CuIn(S,Se)2 thin films just at elevated temperature (e.g. 500 ℃). The other is "two step profile", which allows for slow diffusion of S and Se elements into the alloy precursors at a low temperature before the formation and re-crystallization of CuIn(S,Se)2 thin films at higher temperature (e.g. first 250 ℃ then 500 ℃). X-ray diffrac- tion studies reveal that there is a discrepancy in the shape of (112) peak. Samples annealed with "one step profile" have splits on (112) peaks, while samples annealed with "two step profile" have relatively symmetrical (112) peaks. Grazing incident X-ray diffraction and en- ergy dispersive spectrum measurements of samples successively etched in bromine methanol show that CuIn(S,Se)2 thin films have better in-depth composition uniformity after "two step profile" annealing. The reaction mechanism during the two thermal processing was also investigated by X-ray diffraction and Raman spectra.展开更多
LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability.The samples were characterized by X-ray diffractometry (XRD),transmission electron micr...LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability.The samples were characterized by X-ray diffractometry (XRD),transmission electron microscopy (TEM),energy dispersive spectroscopy (EDS),charge-discharge cycling,cyclic voltammetry (CV),and electrochemical impedance spectroscopy (EIS).Uniform coated layer with a thickness of about 3 nm was observed on the surface of LiNi1/3Co1/3Mn1/3O2 particle by TEM.At 0.5C and 2C rates,1.5% (mass fraction) AlF3-coated LiNi1/3Co1/3Mn1/3O2/Li in 2.8-4.3 V versus Li/Li+ after 80 cycles showed less than 3% of capacity fading,while those of the bare one were 16.5% and 45.9%,respectively.At 5C rate,the capacity retention of the coated sample after 50 cycles maintained 91.4% of the initial discharge capacity,while that of the bare one decreased to 52.6%.EIS result showed that a little change of charge transfer resistance of the coated sample resulting from uniform thin AlF3 layer was proposed as the main reason why its rate capability was improved obviously.CV result further indicated a greater reversibility for the electrode processes and better electrochemical performance of AlF3-coated layer.展开更多
The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulatio...The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulations were performed for N2/Ar discharges at the pressure of 300 Pa, and the frequency of 13.56 MHz. In the practical plasma treatment process,the wafer is always surrounded by a dielectric ring, which is less studied. In this paper, the plasma characteristics are systematically investigated by changing the properties of the dielectric ring, i.e., the relative permittivity, the thickness and the length. The results indicate that the plasma parameters strongly depend on the properties of the dielectric ring. As the ratio of the thickness to the relative permittivity of the dielectric ring increases, the electric field at the wafer edge becomes weaker due to the stronger surface charging effect. This gives rise to the lower N~+ ion density, flux and N atom density at the wafer edge. Thus the homogeneous plasma density is obtained by selecting optimal dielectric ring relative permittivity and thickness. In addition, we also find that the length of the dielectric ring should be as short as possible to avoid the discontinuity of the dielectric materials, and thus obtain the large area uniform plasma.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
文摘CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-quality CuIn(S,Se)2 absorber thin films. In order to figure out the influence of heat treatments on in-depth composition uniformity of CuIn(S,Se)2 thin films, two kinds of reaction temperature profiles were investigated. One process is "one step profile", referring to formation of CuIn(S,Se)2 thin films just at elevated temperature (e.g. 500 ℃). The other is "two step profile", which allows for slow diffusion of S and Se elements into the alloy precursors at a low temperature before the formation and re-crystallization of CuIn(S,Se)2 thin films at higher temperature (e.g. first 250 ℃ then 500 ℃). X-ray diffrac- tion studies reveal that there is a discrepancy in the shape of (112) peak. Samples annealed with "one step profile" have splits on (112) peaks, while samples annealed with "two step profile" have relatively symmetrical (112) peaks. Grazing incident X-ray diffraction and en- ergy dispersive spectrum measurements of samples successively etched in bromine methanol show that CuIn(S,Se)2 thin films have better in-depth composition uniformity after "two step profile" annealing. The reaction mechanism during the two thermal processing was also investigated by X-ray diffraction and Raman spectra.
基金Project(50542004) supported by the National Natural Science Foundation of ChinaProject(1960-71131100017) supported by Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability.The samples were characterized by X-ray diffractometry (XRD),transmission electron microscopy (TEM),energy dispersive spectroscopy (EDS),charge-discharge cycling,cyclic voltammetry (CV),and electrochemical impedance spectroscopy (EIS).Uniform coated layer with a thickness of about 3 nm was observed on the surface of LiNi1/3Co1/3Mn1/3O2 particle by TEM.At 0.5C and 2C rates,1.5% (mass fraction) AlF3-coated LiNi1/3Co1/3Mn1/3O2/Li in 2.8-4.3 V versus Li/Li+ after 80 cycles showed less than 3% of capacity fading,while those of the bare one were 16.5% and 45.9%,respectively.At 5C rate,the capacity retention of the coated sample after 50 cycles maintained 91.4% of the initial discharge capacity,while that of the bare one decreased to 52.6%.EIS result showed that a little change of charge transfer resistance of the coated sample resulting from uniform thin AlF3 layer was proposed as the main reason why its rate capability was improved obviously.CV result further indicated a greater reversibility for the electrode processes and better electrochemical performance of AlF3-coated layer.
基金supported by the National Natural Science Foundation of China(Grant Nos.11335004 and 11405019)the Important National Science and Technology Specific Project of China(Grant No.2011ZX02403-001)
文摘The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulations were performed for N2/Ar discharges at the pressure of 300 Pa, and the frequency of 13.56 MHz. In the practical plasma treatment process,the wafer is always surrounded by a dielectric ring, which is less studied. In this paper, the plasma characteristics are systematically investigated by changing the properties of the dielectric ring, i.e., the relative permittivity, the thickness and the length. The results indicate that the plasma parameters strongly depend on the properties of the dielectric ring. As the ratio of the thickness to the relative permittivity of the dielectric ring increases, the electric field at the wafer edge becomes weaker due to the stronger surface charging effect. This gives rise to the lower N~+ ion density, flux and N atom density at the wafer edge. Thus the homogeneous plasma density is obtained by selecting optimal dielectric ring relative permittivity and thickness. In addition, we also find that the length of the dielectric ring should be as short as possible to avoid the discontinuity of the dielectric materials, and thus obtain the large area uniform plasma.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.