Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc...Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.展开更多
A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range p...A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.展开更多
The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is propos...The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is proposed. The trilinear alternating least square (TALS) algorithm is used to abtain the source matrix, and then the matrix is judged. Simulation results show that the bit error rate (BER) of the detection algorithm is close to that of the non-blind decorrelating method and the algorithm works well under the array error condition. BER difference between the non-blind method and this algorithm is less than 2 dB under a high SNR. The algorithm is blind and robust. The channel fading, the direction of arrive(DOA) imformation and the polarization information are needless in the algorithm.展开更多
Naturally suited array geometry for 360° coverage is the uniform circular array (UCA). A comparison of two types of uniform circular array configurations is presented in this paper. Due to its symmetrical...Naturally suited array geometry for 360° coverage is the uniform circular array (UCA). A comparison of two types of uniform circular array configurations is presented in this paper. Due to its symmetrical geometry UCA is always targeted which results in minimal change inside lobe levels and beam width when scanned by a phased array antenna. Particle Swarm Optimization and Cuckoo algorithm are used for the calculation of complex weights of the array elements. Comparisons are drawn in the context of adaptive beam forming capabilities. Obtained results suggest that planar uniform circular array (9:10) using Cuckoo algorithm, has better beam forming properties with also reduced side lobe levels when compared to other geometry.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
The influence of a rigid spherical baffle on the response of a uniform circular microphone array (UCA) is analyzed and two eigen-beam beamforming arrays are designed in the eigen-beam subspaee derived from the sound...The influence of a rigid spherical baffle on the response of a uniform circular microphone array (UCA) is analyzed and two eigen-beam beamforming arrays are designed in the eigen-beam subspaee derived from the soundfield decomposition. Expressions of white noise gain (WNG) and directivity index (DI) are derived for the designed arrays. Performance analyses are carried out for the designed arrays and compared between those of the delay-and-sum beamforming array using UCA with and without a rigid sphere. Computer simulations demonstrate that the designed arrays have frequency-independent directivity with the cost of reduced robustness at low frequency band. The delay-and-sum beamforming array has constant WNG at all frequencies, while its directivity of which is reduced at low frequency band. The rigid sphere can improve the robustness for all the arrays.展开更多
This article presents the generation of Orbital AngularMomentum(OAM)vortex waves with mode 1 using Uniform Circular Array(UCA)antenna.Two different designs,namely,UCA-1(4-element array antenna)and UCA-2(8-element arra...This article presents the generation of Orbital AngularMomentum(OAM)vortex waves with mode 1 using Uniform Circular Array(UCA)antenna.Two different designs,namely,UCA-1(4-element array antenna)and UCA-2(8-element array antenna),were designed and fabricated using FR-4 substrate to generate OAM mode 1 at 3.5 GHz(5G mid-band).The proposed antenna arrays comprised rectangular microstrip patch elements with inset fed technique.The elements were excited by a carefully designed feeding phase shift network to provide similar output energy at output ports with desired phase shift value.The generated OAM waves were confirmed by measuring the null in the bore sight of their 2D radiation patterns,simulated phase distribution and intensity distribution.The measurement results agree well with the simulation results.Moreover,a detailed mode purity analysis of the generated OAM waves was carried out considering different factors.The investigation found that the greater the number of elements,the higher the purity of the generated OAM wave.Compared with other previous works,the proposed antenna design of this paper is very simple to design and fabricate.In addition,the proposed antennas are compact in design even at lower frequency band with very wide bandwidth to meet the requirements of 5G mid-band applications.展开更多
To meet the ever-increasing demand for the data rates of wireless communications,extremely large-scale antenna array(ELAA)has emerged as one of the candidate technologies for future 6G communications.The significantly...To meet the ever-increasing demand for the data rates of wireless communications,extremely large-scale antenna array(ELAA)has emerged as one of the candidate technologies for future 6G communications.The significantly increased number of antennas in ELAA gives rise to near-field communications,necessitating tailored beamforming techniques within the near-field regions to accommodate the spherical-wave propagation characteristics.Among various array geometries of ELAA,uniform circular array(UCA)has gained much attention for its distinct capability of maintaining uniform beam pattern across different azimuth angles.However,existing analysis of near-field UCA beamforming indicates that the near-field region severely declines in the broadside of UCA,where the system fails to benefit from near-field communications.To tackle this problem,the near-field beamforming technique of uniform concentric circular arrays(UCCAs)is investigated in this paper,which has the potential to enlarge the near-field region in the broadside direction.First,the analysis of beamforming gain in the 3D space with UCA and UCCA is provided.Then,the distinct beamforming characteristics that set UCCA apart from UCA are delineated,revealing the superiority of UCCA in extending the near-field region in broadside at the cost of slightly reduced near-field region in the coplane.Simulation results are provided to verify the effectiveness of the theoretical analysis of beamforming gain with UCCA and the enhanced focusing ability of UCCA in the broadside direction.展开更多
A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-G...A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.展开更多
In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the...In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the circular convolution between a fixed coefficient vector and the received data vector.Thereafter, in order to refine coarse DOA estimates, we reconstruct the direction matrix based on the coarse DOA estimations and take the first order Taylor expansion with DOA estimation offsets into account.Finally, the refined estimations are obtained by compensating the offsets, which are obtained via least squares(LS) without any complex searches.In addition, the refinement can be iteratively implemented to enhance the estimation results.Compared to the offset search method, the proposed method achieves a better estimation performance while requiring lower complexity.Numerical simulations are presented to demonstrate the effectiveness of the proposed method.展开更多
A new Direction Of Arrival (DOA) estimation algorithm for wideband sources based on Uniform Circular Array (UCA) is presented via analyzing widcband performance of the general ESPRIT. The algorithm effectively imp...A new Direction Of Arrival (DOA) estimation algorithm for wideband sources based on Uniform Circular Array (UCA) is presented via analyzing widcband performance of the general ESPRIT. The algorithm effectively improves the wideband performance of ESPRIT based on the interpolation principium and UCA-ESPRIT. The simulated results by computer demonstrate its efficiency.展开更多
Orbital angular momentum(OAM)at radio frequency(RF)has attracted more and more attention as a novel approach of multiplexing a set of orthogonal OAM modes on the same frequency channel to achieve high spectral efficie...Orbital angular momentum(OAM)at radio frequency(RF)has attracted more and more attention as a novel approach of multiplexing a set of orthogonal OAM modes on the same frequency channel to achieve high spectral efficiency(SE).However,the precondition for maintaining the orthogonality among different OAM modes is perfect alignment of the transmit and receive uniform circular arrays(UCAs),which is difficult to be satisfied in practical wireless communication scenarios.Therefore,to achieve available multi-mode OAM broadband wireless communication,we first investigate the effect of oblique angles on the transmission performance of the multi-mode OAM broadband system in the non-parallel misalignment case.Then,we compare the UCA-based RF analog and baseband digital transceiver structures and corresponding beam steering schemes.Mathematical analysis and numerical simulations validate that the SE of the misaligned multi-mode OAM broadband system is quite low,while analog and digital beam steering(DBS)both can significantly improve the SE of the system.However,DBS can obtain higher SE than analog beam steering especially when the bandwidth and the number of array elements are large,which validates that the baseband digital transceiver with DBS is more suitable for multi-mode OAM broadband wireless communication systems in practice.展开更多
The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),...The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),UCA can obtain the similar performance with fewer antennas and can achieve DOA estimation in the range of 360°.This paper investigates the signal model of the MIMO radar with UCA and 2-D DOA estimation with the multiple signal classification(MUSIC)method.The CRB expressions are derived for DOA estimation and the relationship between the CRB and several parameters of the MIMO radar system is discussed.The simulation results show that more antennas and larger radius of the UCA leads to lower CRB and more accurate DOA estimation performance for the monostatic MIMO radar.Also the interference during the 2-D DOA estimation will be well restrained when the number of the transmitting antennas is different from that of the receiving antennas.展开更多
For the problem of multiplexing multimodal vortex electromagnetic waves,a double-ring concentric uniform circular array(CUCA)consisting of 12 circularly polarized antennas(4 inner rings and 8 outer rings)is proposed i...For the problem of multiplexing multimodal vortex electromagnetic waves,a double-ring concentric uniform circular array(CUCA)consisting of 12 circularly polarized antennas(4 inner rings and 8 outer rings)is proposed in this paper.A complex feeding network is solved by rotating the circularly polarized antennas at a certain angle.The antennas are rotationally symmetric and point to the center,generating orbital angular momentum(OAM)waves by feeding the same amplitude and phase signals.In addition,this paper combines millimeter wave(mm-wave)and ultra-wideband(UWB)with OAM.The proposed antenna array can generate OAM beams at 30∼40 GHz with l=−1,−2.When l=−1 the relative bandwidth is 25.2% and the gain is 8.03 dBi;when l=−2 the relative bandwidth is 27.7% and the gain is 9.43 dBi.The analysis of simulation results shows that the antenna array has UWB performance,good gain,and a standard spiral phase distribution,which can provide some practical significance for modal multiplexing of mm-wave band OAM.展开更多
基金supported by National Key Research and Development Program of China under Grant 2020YFB1804901State Key Laboratory of Rail Traffic Control and Safety(Contract:No.RCS2022ZT 015)Special Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau(cstc2019jscx-fxydX0053).
文摘Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.
基金supported by the National Natural Science Foundation of China(62022091,61921001).
文摘A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.
文摘The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is proposed. The trilinear alternating least square (TALS) algorithm is used to abtain the source matrix, and then the matrix is judged. Simulation results show that the bit error rate (BER) of the detection algorithm is close to that of the non-blind decorrelating method and the algorithm works well under the array error condition. BER difference between the non-blind method and this algorithm is less than 2 dB under a high SNR. The algorithm is blind and robust. The channel fading, the direction of arrive(DOA) imformation and the polarization information are needless in the algorithm.
文摘Naturally suited array geometry for 360° coverage is the uniform circular array (UCA). A comparison of two types of uniform circular array configurations is presented in this paper. Due to its symmetrical geometry UCA is always targeted which results in minimal change inside lobe levels and beam width when scanned by a phased array antenna. Particle Swarm Optimization and Cuckoo algorithm are used for the calculation of complex weights of the array elements. Comparisons are drawn in the context of adaptive beam forming capabilities. Obtained results suggest that planar uniform circular array (9:10) using Cuckoo algorithm, has better beam forming properties with also reduced side lobe levels when compared to other geometry.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
文摘The influence of a rigid spherical baffle on the response of a uniform circular microphone array (UCA) is analyzed and two eigen-beam beamforming arrays are designed in the eigen-beam subspaee derived from the soundfield decomposition. Expressions of white noise gain (WNG) and directivity index (DI) are derived for the designed arrays. Performance analyses are carried out for the designed arrays and compared between those of the delay-and-sum beamforming array using UCA with and without a rigid sphere. Computer simulations demonstrate that the designed arrays have frequency-independent directivity with the cost of reduced robustness at low frequency band. The delay-and-sum beamforming array has constant WNG at all frequencies, while its directivity of which is reduced at low frequency band. The rigid sphere can improve the robustness for all the arrays.
基金supported by Ministry of Higher Education through the FundamentalResearch Grant Scheme(FRGS)under a grant number of FRGS/1/2020/ICT09/UNIMAP/02/2.
文摘This article presents the generation of Orbital AngularMomentum(OAM)vortex waves with mode 1 using Uniform Circular Array(UCA)antenna.Two different designs,namely,UCA-1(4-element array antenna)and UCA-2(8-element array antenna),were designed and fabricated using FR-4 substrate to generate OAM mode 1 at 3.5 GHz(5G mid-band).The proposed antenna arrays comprised rectangular microstrip patch elements with inset fed technique.The elements were excited by a carefully designed feeding phase shift network to provide similar output energy at output ports with desired phase shift value.The generated OAM waves were confirmed by measuring the null in the bore sight of their 2D radiation patterns,simulated phase distribution and intensity distribution.The measurement results agree well with the simulation results.Moreover,a detailed mode purity analysis of the generated OAM waves was carried out considering different factors.The investigation found that the greater the number of elements,the higher the purity of the generated OAM wave.Compared with other previous works,the proposed antenna design of this paper is very simple to design and fabricate.In addition,the proposed antennas are compact in design even at lower frequency band with very wide bandwidth to meet the requirements of 5G mid-band applications.
基金supported by the National Natural Science Foundation of China(No.62031019)the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project(No.956256).
文摘To meet the ever-increasing demand for the data rates of wireless communications,extremely large-scale antenna array(ELAA)has emerged as one of the candidate technologies for future 6G communications.The significantly increased number of antennas in ELAA gives rise to near-field communications,necessitating tailored beamforming techniques within the near-field regions to accommodate the spherical-wave propagation characteristics.Among various array geometries of ELAA,uniform circular array(UCA)has gained much attention for its distinct capability of maintaining uniform beam pattern across different azimuth angles.However,existing analysis of near-field UCA beamforming indicates that the near-field region severely declines in the broadside of UCA,where the system fails to benefit from near-field communications.To tackle this problem,the near-field beamforming technique of uniform concentric circular arrays(UCCAs)is investigated in this paper,which has the potential to enlarge the near-field region in the broadside direction.First,the analysis of beamforming gain in the 3D space with UCA and UCCA is provided.Then,the distinct beamforming characteristics that set UCCA apart from UCA are delineated,revealing the superiority of UCCA in extending the near-field region in broadside at the cost of slightly reduced near-field region in the coplane.Simulation results are provided to verify the effectiveness of the theoretical analysis of beamforming gain with UCCA and the enhanced focusing ability of UCCA in the broadside direction.
基金This project was supported by the Graduate Innovation Laboratory of Jilin University(502039)Jilin Science Committee of China(20030519)+1 种基金the National Natural Science Foundation of China (69872012)the Foundation of Nanjing Institute of Technology.
文摘A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.
基金supported by the National Natural Science Foundation of China (61971217, 61601167)Jiangsu Planned Project for Postdoctoral Research Funds (2020Z013)+2 种基金China Postdoctoral Science Foundation (2020M681585)the fund of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System (CEMEE 2021Z0101B)the fund of State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University)(MRUKF2021033)。
文摘In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the circular convolution between a fixed coefficient vector and the received data vector.Thereafter, in order to refine coarse DOA estimates, we reconstruct the direction matrix based on the coarse DOA estimations and take the first order Taylor expansion with DOA estimation offsets into account.Finally, the refined estimations are obtained by compensating the offsets, which are obtained via least squares(LS) without any complex searches.In addition, the refinement can be iteratively implemented to enhance the estimation results.Compared to the offset search method, the proposed method achieves a better estimation performance while requiring lower complexity.Numerical simulations are presented to demonstrate the effectiveness of the proposed method.
文摘A new Direction Of Arrival (DOA) estimation algorithm for wideband sources based on Uniform Circular Array (UCA) is presented via analyzing widcband performance of the general ESPRIT. The algorithm effectively improves the wideband performance of ESPRIT based on the interpolation principium and UCA-ESPRIT. The simulated results by computer demonstrate its efficiency.
基金supported by the Natural Science Basic Research Program of Shaanxi(2021JZ-18)the Natural Science Foundation of Guangdong Province of China(2021A1515010812)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(2021D04)the Fundamental Research Funds for Central Universities,and the Innovation Fund of Xidian University。
文摘Orbital angular momentum(OAM)at radio frequency(RF)has attracted more and more attention as a novel approach of multiplexing a set of orthogonal OAM modes on the same frequency channel to achieve high spectral efficiency(SE).However,the precondition for maintaining the orthogonality among different OAM modes is perfect alignment of the transmit and receive uniform circular arrays(UCAs),which is difficult to be satisfied in practical wireless communication scenarios.Therefore,to achieve available multi-mode OAM broadband wireless communication,we first investigate the effect of oblique angles on the transmission performance of the multi-mode OAM broadband system in the non-parallel misalignment case.Then,we compare the UCA-based RF analog and baseband digital transceiver structures and corresponding beam steering schemes.Mathematical analysis and numerical simulations validate that the SE of the misaligned multi-mode OAM broadband system is quite low,while analog and digital beam steering(DBS)both can significantly improve the SE of the system.However,DBS can obtain higher SE than analog beam steering especially when the bandwidth and the number of array elements are large,which validates that the baseband digital transceiver with DBS is more suitable for multi-mode OAM broadband wireless communication systems in practice.
基金supported by the National Natural Science Foundation of China(Nos.61071163,61071164,61471191)project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),UCA can obtain the similar performance with fewer antennas and can achieve DOA estimation in the range of 360°.This paper investigates the signal model of the MIMO radar with UCA and 2-D DOA estimation with the multiple signal classification(MUSIC)method.The CRB expressions are derived for DOA estimation and the relationship between the CRB and several parameters of the MIMO radar system is discussed.The simulation results show that more antennas and larger radius of the UCA leads to lower CRB and more accurate DOA estimation performance for the monostatic MIMO radar.Also the interference during the 2-D DOA estimation will be well restrained when the number of the transmitting antennas is different from that of the receiving antennas.
基金supported by the National Natural Science Foundation of China under Grant 62061039.
文摘For the problem of multiplexing multimodal vortex electromagnetic waves,a double-ring concentric uniform circular array(CUCA)consisting of 12 circularly polarized antennas(4 inner rings and 8 outer rings)is proposed in this paper.A complex feeding network is solved by rotating the circularly polarized antennas at a certain angle.The antennas are rotationally symmetric and point to the center,generating orbital angular momentum(OAM)waves by feeding the same amplitude and phase signals.In addition,this paper combines millimeter wave(mm-wave)and ultra-wideband(UWB)with OAM.The proposed antenna array can generate OAM beams at 30∼40 GHz with l=−1,−2.When l=−1 the relative bandwidth is 25.2% and the gain is 8.03 dBi;when l=−2 the relative bandwidth is 27.7% and the gain is 9.43 dBi.The analysis of simulation results shows that the antenna array has UWB performance,good gain,and a standard spiral phase distribution,which can provide some practical significance for modal multiplexing of mm-wave band OAM.