Abstract: The aim of this study was to develop a cheap, locally made and friendly applicable phantom for gamma camera quality control and to test its validity relative to standard results (intrinsic and extrinsic spat...Abstract: The aim of this study was to develop a cheap, locally made and friendly applicable phantom for gamma camera quality control and to test its validity relative to standard results (intrinsic and extrinsic spatial linearity and intrinsic and extrinsic uniformity) of gamma camera SPECT. And the significance of this experimental study was to introduce a multi-purpose phantom for gamma camera which could overcome the risk accompanied by quality control test procedure such as detector crystal damage and the appearance of moiré patterns. The results of the developed phantom showed an average count difference of 0.7% relative to the standard phantom and about 4% in X- to Y-axis directions relative to the standard phantom. Also, the measured absolute linearity was 0.63 mm in X direction and 0.64 mm in Y direction for the UFOV compare with 0.70 mm value of acceptance test. And the I.U. and D.U. of the developed phantom were 3.18% and 2.27% respectively for the UFOV relative to the standard phantom I.U. and D.U. (2.0% and 1.5%) for the UFOV respectively.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
A complete control type plant factory has high efficiency in terms of cultivation area by constructing vertical multiple layered cultivation beds.However,it has a problem of irregular crop growth due to temperature de...A complete control type plant factory has high efficiency in terms of cultivation area by constructing vertical multiple layered cultivation beds.However,it has a problem of irregular crop growth due to temperature deviation at upper and lower beds and increases in energy consumption by a prolonged cultivation period.In this work,air flow rate inside a facility was improved by a hybrid control of air flow devices like air conditioning and air circulation fan with an established wireless sensor network to minimize temperature deviations between upper and lower beds and to promote crop growth.The performance of proposed system was verified with an experimental environment or Case A wherein air conditioning device was operated without a control algorithm and Case B wherein air conditioning and circulation fans were alternatively operated based on the hybrid control algorithm.After planting leafy vegetables under each experimental condition,crops were cultivated for 21 days.As a result,Case B wherein AC(air conditioning) and ACF(air-circulation fan) were alternatively operated based on the hybrid control algorithm showed that fresh mass,number of leaves,and leaf length for the crops grown were increased by 40.6%,41.1%,and 11.1%,respectively,compared to Case A.展开更多
文摘Abstract: The aim of this study was to develop a cheap, locally made and friendly applicable phantom for gamma camera quality control and to test its validity relative to standard results (intrinsic and extrinsic spatial linearity and intrinsic and extrinsic uniformity) of gamma camera SPECT. And the significance of this experimental study was to introduce a multi-purpose phantom for gamma camera which could overcome the risk accompanied by quality control test procedure such as detector crystal damage and the appearance of moiré patterns. The results of the developed phantom showed an average count difference of 0.7% relative to the standard phantom and about 4% in X- to Y-axis directions relative to the standard phantom. Also, the measured absolute linearity was 0.63 mm in X direction and 0.64 mm in Y direction for the UFOV compare with 0.70 mm value of acceptance test. And the I.U. and D.U. of the developed phantom were 3.18% and 2.27% respectively for the UFOV relative to the standard phantom I.U. and D.U. (2.0% and 1.5%) for the UFOV respectively.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
基金Work(NRF-2012H1B8A2026145)supported by the Human Resource Training Program for Regional Innovation through the Ministry of Education and National Research Foundation of KoreaProject(2015K000281)supported by the Functional Districts of the Science Belt Support Program,Ministry of Science,ICT and Future Planning,Korea
文摘A complete control type plant factory has high efficiency in terms of cultivation area by constructing vertical multiple layered cultivation beds.However,it has a problem of irregular crop growth due to temperature deviation at upper and lower beds and increases in energy consumption by a prolonged cultivation period.In this work,air flow rate inside a facility was improved by a hybrid control of air flow devices like air conditioning and air circulation fan with an established wireless sensor network to minimize temperature deviations between upper and lower beds and to promote crop growth.The performance of proposed system was verified with an experimental environment or Case A wherein air conditioning device was operated without a control algorithm and Case B wherein air conditioning and circulation fans were alternatively operated based on the hybrid control algorithm.After planting leafy vegetables under each experimental condition,crops were cultivated for 21 days.As a result,Case B wherein AC(air conditioning) and ACF(air-circulation fan) were alternatively operated based on the hybrid control algorithm showed that fresh mass,number of leaves,and leaf length for the crops grown were increased by 40.6%,41.1%,and 11.1%,respectively,compared to Case A.