In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is use...In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is used to study the asymptotic behaviour of Kuramoto-Sivashinsky equation and to construct the bifurcation diagrams.展开更多
In this paper,we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin(HDG)and weak Galerkin(WG)methods.By using the standard Brezzi theory on mixed methods,we carefu...In this paper,we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin(HDG)and weak Galerkin(WG)methods.By using the standard Brezzi theory on mixed methods,we carefully define appropriate norms for the various discretization variables and then establish that the stability and error estimates hold uniformly with respect to stabilization and discretization parameters.As a result,by taking appropriate limit of the stabilization parameters,we show that the HDG method converges to a primal conforming method and the WG method converges to a mixed conforming method.展开更多
We propose a family of nonconforming rectangular elements for the linear strain gradient elastic model.Optimal error estimates uniformly with respect to the small material parameter have been proved.Numerical results ...We propose a family of nonconforming rectangular elements for the linear strain gradient elastic model.Optimal error estimates uniformly with respect to the small material parameter have been proved.Numerical results confirm the theoretical prediction.展开更多
文摘In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is used to study the asymptotic behaviour of Kuramoto-Sivashinsky equation and to construct the bifurcation diagrams.
基金The work of both authors was partially supported by the Center for Computational Mathematics and ApplicationsThe Pennsylvania State University,and was partially supported by NSF grant DMS-1522615.
文摘In this paper,we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin(HDG)and weak Galerkin(WG)methods.By using the standard Brezzi theory on mixed methods,we carefully define appropriate norms for the various discretization variables and then establish that the stability and error estimates hold uniformly with respect to stabilization and discretization parameters.As a result,by taking appropriate limit of the stabilization parameters,we show that the HDG method converges to a primal conforming method and the WG method converges to a mixed conforming method.
基金The work of Ming was partially supported by the National Natural Science Foundation of China for Distinguished Young Scholars No.11425106 and National Natural Science Foundation of China grants No.91630313 and by the support of CAS NCMIS.
文摘We propose a family of nonconforming rectangular elements for the linear strain gradient elastic model.Optimal error estimates uniformly with respect to the small material parameter have been proved.Numerical results confirm the theoretical prediction.