Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound fi...Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound field from the transition region of an axisymmetric body was calculated by the geometrical theory of diffraction. The diffraction ray between the source point and the receiving point on the surface of an axisymmetric body was calculated by using the dynamic programming method. Based on the diffracted sound field, a simulation scheme for the noise correlation of the conformal array was presented. It was shown that the normalized pressure of the diffracted sound field from the transition region reduced with the increases of the frequency and the curvature of the ray. The flow noises of two models were compared and a rather optimum fore-body geometric shape was given. Furthermore, it was shown that the correlation of the flow noise in the low frequencies was stronger than that in the high frequencies. And the flow noise received by the acoustic array on the curved surface had a stronger correlation than that on the head plane at the designed center frequency, which is important for sonar system design.展开更多
随着特高压(UHV)输电工程的建设,特高压输电线路对邻近无线电台站高频信号的无源干扰是目前迫切需要解决的问题。针对矩量法求解输电线路无源干扰存在的计算量过大,无法求解线路对高频信号无源干扰的缺点,基于输电线路无源干扰面模型,...随着特高压(UHV)输电工程的建设,特高压输电线路对邻近无线电台站高频信号的无源干扰是目前迫切需要解决的问题。针对矩量法求解输电线路无源干扰存在的计算量过大,无法求解线路对高频信号无源干扰的缺点,基于输电线路无源干扰面模型,提出了采用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD)求解输电线路对高频信号无源干扰的思想。根据一致性几何绕射理论中的边缘绕射和表面绕射模型,研究了铁塔角钢和导线面模型在高频入射线照射下的绕射场,并介绍了该绕射场的求解方法。结合具体的工程问题,对极高频信号的输电线路无源干扰问题进行了分析研究。经验证,采用UTD方法可以实现对输电线路高频信号无源干扰问题的求解,也可反映各种线路条件下无源干扰的变化趋势。展开更多
各向异性阻抗劈的绕射研究对雷达探测、电波传播和高频天线设计等方面有着重要的意义。当平面波照射在各向异性阻抗表面上时,可能激励起导波模形式的表面波,在表面波的传播过程中,若遇到几何参数或者物理参数不连续的目标(例如劈边)则...各向异性阻抗劈的绕射研究对雷达探测、电波传播和高频天线设计等方面有着重要的意义。当平面波照射在各向异性阻抗表面上时,可能激励起导波模形式的表面波,在表面波的传播过程中,若遇到几何参数或者物理参数不连续的目标(例如劈边)则会产生绕射场。考虑到斜入射情况下电场与磁场的耦合,在一致性几何绕射理论(uniform geometrical theory of diffraction,UTD)框架内应用摄动原理,以及Van der Waerden方法得到斜入射情况下各向异性阻抗劈散射场中表面波的绕射场贡献。展开更多
基金Project supported by the National Natural Science Foundational of China (Grant No.10774119)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No.NCET-08-0455)+2 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No.SJ08F07)the Foundation of National Laboratory of Acoustics of Chinathe Foundation for Fundamental Research of Northwestern Polytechnical University of China (Grant No.2007004)
文摘Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound field from the transition region of an axisymmetric body was calculated by the geometrical theory of diffraction. The diffraction ray between the source point and the receiving point on the surface of an axisymmetric body was calculated by using the dynamic programming method. Based on the diffracted sound field, a simulation scheme for the noise correlation of the conformal array was presented. It was shown that the normalized pressure of the diffracted sound field from the transition region reduced with the increases of the frequency and the curvature of the ray. The flow noises of two models were compared and a rather optimum fore-body geometric shape was given. Furthermore, it was shown that the correlation of the flow noise in the low frequencies was stronger than that in the high frequencies. And the flow noise received by the acoustic array on the curved surface had a stronger correlation than that on the head plane at the designed center frequency, which is important for sonar system design.
文摘随着特高压(UHV)输电工程的建设,特高压输电线路对邻近无线电台站高频信号的无源干扰是目前迫切需要解决的问题。针对矩量法求解输电线路无源干扰存在的计算量过大,无法求解线路对高频信号无源干扰的缺点,基于输电线路无源干扰面模型,提出了采用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD)求解输电线路对高频信号无源干扰的思想。根据一致性几何绕射理论中的边缘绕射和表面绕射模型,研究了铁塔角钢和导线面模型在高频入射线照射下的绕射场,并介绍了该绕射场的求解方法。结合具体的工程问题,对极高频信号的输电线路无源干扰问题进行了分析研究。经验证,采用UTD方法可以实现对输电线路高频信号无源干扰问题的求解,也可反映各种线路条件下无源干扰的变化趋势。
文摘各向异性阻抗劈的绕射研究对雷达探测、电波传播和高频天线设计等方面有着重要的意义。当平面波照射在各向异性阻抗表面上时,可能激励起导波模形式的表面波,在表面波的传播过程中,若遇到几何参数或者物理参数不连续的目标(例如劈边)则会产生绕射场。考虑到斜入射情况下电场与磁场的耦合,在一致性几何绕射理论(uniform geometrical theory of diffraction,UTD)框架内应用摄动原理,以及Van der Waerden方法得到斜入射情况下各向异性阻抗劈散射场中表面波的绕射场贡献。