Let F be a graph and H be a hypergraph.We say that H contains a Berge-F If there exists a bijectionψ:E(F)→E(H)such that for Ve E E(F),e C(e),and the Turan number of Berge-F is defined to be the maximum number of edg...Let F be a graph and H be a hypergraph.We say that H contains a Berge-F If there exists a bijectionψ:E(F)→E(H)such that for Ve E E(F),e C(e),and the Turan number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free,denoted by ex,(n,Berge-F).A linear forest is a graph whose connected components are all paths or isolated vertices.Let Ln,k be the family of all linear forests of n vertices with k edges.In this paper,Turan number of Berge-Ln,in an r-uniform hypergraph is studied.When r≥k+1 and 3≤r≤l[]=1,we determine 2 the exact value of ex,(n,Berge-Ln,)respectively.When K-1≤r≤k,we 2 determine the upper bound of ex,(n,Berge-Ln,).展开更多
A hypergraph H is an(n,m)-hypergraph if it contains n vertices and m hyperedges,where n≥1 and m≥0 are two integers.Let k be a positive integer and let L be a set of nonnegative integers.A hyper graph H is k-uniform ...A hypergraph H is an(n,m)-hypergraph if it contains n vertices and m hyperedges,where n≥1 and m≥0 are two integers.Let k be a positive integer and let L be a set of nonnegative integers.A hyper graph H is k-uniform if all its hyperedges have the same size k,and H is L-intersecting if the number of common vertices of every two hyperedges belongs to L.In this paper,we propose and investigate the problem of estimating the maximum k among all k-uniform L-intersecting(n,m)-hypergraphs for fixed n,m and L.We will provide some tight upper and lower bounds on k in terms of n,m and L.展开更多
In this paper we consider the random r-uniform r-partite hypergraph model H(n1, n2,…, nr; n, p) which consists of all the r-uniform r-partite hypergraphs with vertex partition {V1,V2,…, Vr} where |Vi| = ni = ni...In this paper we consider the random r-uniform r-partite hypergraph model H(n1, n2,…, nr; n, p) which consists of all the r-uniform r-partite hypergraphs with vertex partition {V1,V2,…, Vr} where |Vi| = ni = ni(n) (1 ≤ i ≤ r) are positive integer-valued functions on n with n1 +n2 +… +nr =n, and each r-subset containing exactly one element in Vi (1 ≤ i ≤ r) is chosen to be a hyperedge of Hp ∈H(n1,n2,…,nr;n,p) with probability p = p(n), all choices being independent. Let △V1 = △V1 (H) and δv1 = δv1(H) be the maximum and minimum degree of vertices in V1 of H, respectively; Xd,V1 = Xd,V1 (H), Yd,V1 = Yd,V1 (H), Zd,V1 = Zd,V1 (H) and Zc,d,V1=Zc,d,V1 (H) be the number of vertices in V1 of H with degree d, at least d, at most d, and between c and d, respectively. In this paper we obtain that in the space H(n1, n2,…, nr; n,p), Xd,V1, Yd,V1, Zd,V1, and Zc,d,V1all have asymptotically Poisson distributions. We also answer the following two questions. What is the range of p that there exists a function D(n) such that in the space H(n1, n2,…,nr; n, p), lim n→+∞ P(△v1 = D(n)) = 1? What is the range of p such that a.e., Hp ∈ H(n1,n2,...,nr;n,p) has a unique vertex in V1 with degree Av1(Hp)? Both answers are p = o(logn1/N), where N = r ∏ i=2 ni. The corresponding problems on δv1(Hp) also are considered, and we obtained the answers are p ≤ (1+o(1))(logn1/N) andp=o (log n1/N), respectively.展开更多
A supertree is a connected and acyclic hypergraph. For a hypergraph H, the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H. By applying the operation of moving edges on hy...A supertree is a connected and acyclic hypergraph. For a hypergraph H, the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H. By applying the operation of moving edges on hypergraphs and the weighted incidence matrix method, we determine the ninth and the tenth k-uniform supertrees with the largest spectral radii among all k-uniform supertrees on n vertices, which extends the known result.展开更多
We obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor.By using the technique of the representation associate matrix of a tensor and the associate directed graph ...We obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor.By using the technique of the representation associate matrix of a tensor and the associate directed graph of the matrix,the equality cases of the bounds are completely characterized by graph theory methods.Applying these bounds to a nonnegative irreducible matrix or a connected graph(digraph),we can improve the results of L.H.You,Y.J.Shu,and P.Z.Yuan[Linear Multilinear Algebra,2017,65(1):113-128],and obtain some new or known results.Applying these bounds to a uniform hypergraph,we obtain some new results and improve some known results of X.Y.Yuan,M.Zhang,and M.Lu[Linear Algebra Appl.,2015,484:540-549].Finally,we give a characterization of a strongly connected/c-uniform directed hypergraph,and obtain some new results by applying these bounds to a uniform directed hypergraph.展开更多
文摘Let F be a graph and H be a hypergraph.We say that H contains a Berge-F If there exists a bijectionψ:E(F)→E(H)such that for Ve E E(F),e C(e),and the Turan number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free,denoted by ex,(n,Berge-F).A linear forest is a graph whose connected components are all paths or isolated vertices.Let Ln,k be the family of all linear forests of n vertices with k edges.In this paper,Turan number of Berge-Ln,in an r-uniform hypergraph is studied.When r≥k+1 and 3≤r≤l[]=1,we determine 2 the exact value of ex,(n,Berge-Ln,)respectively.When K-1≤r≤k,we 2 determine the upper bound of ex,(n,Berge-Ln,).
基金Supported by National Natural Science Foundation of China(Grant Nos.12242111,12131013,12171393,12071370,71973103,U1803263,11601430)Natural Science Foundation of Shaanxi Province(Grant Nos.2021JM-040,2020JQ-099)+2 种基金Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSZ009)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515030208,2022A1515010899)the Fundamental Research Funds for the Central Universities。
文摘A hypergraph H is an(n,m)-hypergraph if it contains n vertices and m hyperedges,where n≥1 and m≥0 are two integers.Let k be a positive integer and let L be a set of nonnegative integers.A hyper graph H is k-uniform if all its hyperedges have the same size k,and H is L-intersecting if the number of common vertices of every two hyperedges belongs to L.In this paper,we propose and investigate the problem of estimating the maximum k among all k-uniform L-intersecting(n,m)-hypergraphs for fixed n,m and L.We will provide some tight upper and lower bounds on k in terms of n,m and L.
基金The authors would like to thank the referees for several remarks and suggestions. This work was supported in part by the Joint NSFC-ISF Research Program (jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 11561141001)), the National Natural Science Foundation of China (Grant Nos. 11531001 and 11271256), Innovation Program of Shanghai Municipal Education Commission (Grant No. 14ZZ016) and SpeciMized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130073110075).
文摘We present several upper bounds for the adjacency and signless Laplacian spectral radii of uniform hypergraphs in terms of degree sequences.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11401102,11271307 and 11101086Fuzhou university of Science and Technology Development Fund No.2014-XQ-29
文摘In this paper we consider the random r-uniform r-partite hypergraph model H(n1, n2,…, nr; n, p) which consists of all the r-uniform r-partite hypergraphs with vertex partition {V1,V2,…, Vr} where |Vi| = ni = ni(n) (1 ≤ i ≤ r) are positive integer-valued functions on n with n1 +n2 +… +nr =n, and each r-subset containing exactly one element in Vi (1 ≤ i ≤ r) is chosen to be a hyperedge of Hp ∈H(n1,n2,…,nr;n,p) with probability p = p(n), all choices being independent. Let △V1 = △V1 (H) and δv1 = δv1(H) be the maximum and minimum degree of vertices in V1 of H, respectively; Xd,V1 = Xd,V1 (H), Yd,V1 = Yd,V1 (H), Zd,V1 = Zd,V1 (H) and Zc,d,V1=Zc,d,V1 (H) be the number of vertices in V1 of H with degree d, at least d, at most d, and between c and d, respectively. In this paper we obtain that in the space H(n1, n2,…, nr; n,p), Xd,V1, Yd,V1, Zd,V1, and Zc,d,V1all have asymptotically Poisson distributions. We also answer the following two questions. What is the range of p that there exists a function D(n) such that in the space H(n1, n2,…,nr; n, p), lim n→+∞ P(△v1 = D(n)) = 1? What is the range of p such that a.e., Hp ∈ H(n1,n2,...,nr;n,p) has a unique vertex in V1 with degree Av1(Hp)? Both answers are p = o(logn1/N), where N = r ∏ i=2 ni. The corresponding problems on δv1(Hp) also are considered, and we obtained the answers are p ≤ (1+o(1))(logn1/N) andp=o (log n1/N), respectively.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 11101263).
文摘A supertree is a connected and acyclic hypergraph. For a hypergraph H, the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H. By applying the operation of moving edges on hypergraphs and the weighted incidence matrix method, we determine the ninth and the tenth k-uniform supertrees with the largest spectral radii among all k-uniform supertrees on n vertices, which extends the known result.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11571123,11871040,11971180)the Guangdong Provincial Natural Science Foundation(No.2015A030313377)Guangdong Engineering Research Center for Data Science.
文摘We obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor.By using the technique of the representation associate matrix of a tensor and the associate directed graph of the matrix,the equality cases of the bounds are completely characterized by graph theory methods.Applying these bounds to a nonnegative irreducible matrix or a connected graph(digraph),we can improve the results of L.H.You,Y.J.Shu,and P.Z.Yuan[Linear Multilinear Algebra,2017,65(1):113-128],and obtain some new or known results.Applying these bounds to a uniform hypergraph,we obtain some new results and improve some known results of X.Y.Yuan,M.Zhang,and M.Lu[Linear Algebra Appl.,2015,484:540-549].Finally,we give a characterization of a strongly connected/c-uniform directed hypergraph,and obtain some new results by applying these bounds to a uniform directed hypergraph.