In this paper the authors study the sample behavior of the Gini’s index of dissimilarity in the case of two samples of equal size drawn from the same uniform population. The paper present the analytical results obtai...In this paper the authors study the sample behavior of the Gini’s index of dissimilarity in the case of two samples of equal size drawn from the same uniform population. The paper present the analytical results obtained for the exact distribution of the index of dissimilarity for sample sizes n ≤ 8. This result was obtained by expressing the index of dissimilarity as a linear combination of spacings of the pooled sample. The obtained results allow to achieve the exact expressions of the moments for any sample size and, therefore, to highlight the main features of the sampling distributions of the index of dissimilarity. The present study can enhance inferential statistical aspects about one of the main contributions of Gini.展开更多
Given the increasing uncertainties in power supply and load,this paper proposes the concept of power source and grid coordination uniformity planning.In this approach,the standard deviation of the transmission line lo...Given the increasing uncertainties in power supply and load,this paper proposes the concept of power source and grid coordination uniformity planning.In this approach,the standard deviation of the transmission line load rate is considered as the uniformity evaluation index for power source and grid planning.A multi-stage and multi-objective optimization model of the power source and grid expansion planning is established to minimize the comprehensive cost of the entire planning cycle.In this study,the improved particle swarm optimization algorithm and genetic algorithm are combined to solve the model,thus improving the efficiency and accuracy of the solution.The analysis of a simple IEEE Garver’s 6-node system shows that the model and solution method are effective and feasible.Moreover,they are suitable for the coordinated planning of the power source and grid under a diversified nature of power supply and load.展开更多
After expanding the capacity by widening the trolley of the No. 3 sintering machine, severe uneven sintering occurred in the trolley' s lateral distribution, which affected the output and quality of sinter. In this s...After expanding the capacity by widening the trolley of the No. 3 sintering machine, severe uneven sintering occurred in the trolley' s lateral distribution, which affected the output and quality of sinter. In this study, the quantitative evaluation indices of the burden uniform distribution in the width direction of the sintering machine is introduced for the first time. By measuring the temperature of discharged gas, a plane temperature field is constructed. Through analyzing the temperature field and the burden layer' s differential thermal equilibrium, a mathematical model for evaluating the indices, which is an online reflection of the degree of uniform distribution, is built. Following the improvements in burden distribution equipment ,the optimization of the ignition system and the dynamic adjustment of the process ,the problem of uneven sintering in lateral distribution has been solved, and the quality and the yield of sinter have been improved.展开更多
Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniforml...Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniformly distributed population structure that increases RUE. In this study, we used tridimensional uniform sowing to create a wheat canopy within which light was spread evenly to increase RUE. This study was done during 2014-2016 in the Shunyi District, Beijing, China. The soil type was sandy loam. Wheat was grown in two sowing patterns: (1) tridimensional uniform sowing (U); (2) conventional drilling (D). Four planting densities were used: 1.8, 2.7, 3.6, and 4.5 million plants ha-1. Several indices were measured to compare the wheat canopies: photosynthetic active radiation intercepted by the canopy (IPAR), leaf area index (LAI), leaf mass per unit area (LMA), canopy extinction coefficient (K), and RUE. In two sowing patterns, the K values decreased with increasing planting density, but the K values of U were lower than that of D. LMA and IPAR were higher for U than for D, whereas LAI was nearly the same for both sowing patterns. IPAR and LAI increased with increasing density under the same sowing pattern. However, the difference in IPAR and LAI between the 3.6 and 4.5 million plants ha-1 treatments was not significant for both sowing patterns. Therefore, LAI within the same planting density was not affected by sowing pattern. RUE was the largest for the U mode with a planting density of 3.6 million plants ha-1 treatment. For the D sowing pattern, the lowest planting density (1.8 million plants ha-1) resulted in the highest yield. Light radiation interception was minimal for the D mode with a planting density of 1.8 million plants ha-1 treatment, but the highest RUE and highest yield were observed under this condition. For the U sowing pattern, IPAR increased with increasing planting density, but yield and RUE were the highest with a planting density of 3.6 million plants ha-1. These results indicated that the optimal planting density for improving the canopy light environment differed between the sowing patterns. The effect of sowing patternxplanting density interaction on grain yield, yield components, RUE, IPAR, and LMA was significant (P〈0.05). Correlation analysis indicated that there is a positive significant correlation between grain yield and RUE (t=0.880, P〈0.01), LMA (r=0.613, P〈0.05), andspike number (t=0.624, P〈0.05). These results demonstrated that the tridimensional uniform sowing technique, particularly at a planting density of 3.6 million plants ha-0, can effectively increase light interception and utilization and unit leaf area. This leads to the production of more photosynthetic products that in turn lead to significantly increased spike number (P〈0.05), kernel number, grain weight, and an overall increase in yield.展开更多
文摘In this paper the authors study the sample behavior of the Gini’s index of dissimilarity in the case of two samples of equal size drawn from the same uniform population. The paper present the analytical results obtained for the exact distribution of the index of dissimilarity for sample sizes n ≤ 8. This result was obtained by expressing the index of dissimilarity as a linear combination of spacings of the pooled sample. The obtained results allow to achieve the exact expressions of the moments for any sample size and, therefore, to highlight the main features of the sampling distributions of the index of dissimilarity. The present study can enhance inferential statistical aspects about one of the main contributions of Gini.
基金supported by Theoretical study of power system synergistic dispatch National Science Foundation of China(51477091).
文摘Given the increasing uncertainties in power supply and load,this paper proposes the concept of power source and grid coordination uniformity planning.In this approach,the standard deviation of the transmission line load rate is considered as the uniformity evaluation index for power source and grid planning.A multi-stage and multi-objective optimization model of the power source and grid expansion planning is established to minimize the comprehensive cost of the entire planning cycle.In this study,the improved particle swarm optimization algorithm and genetic algorithm are combined to solve the model,thus improving the efficiency and accuracy of the solution.The analysis of a simple IEEE Garver’s 6-node system shows that the model and solution method are effective and feasible.Moreover,they are suitable for the coordinated planning of the power source and grid under a diversified nature of power supply and load.
文摘After expanding the capacity by widening the trolley of the No. 3 sintering machine, severe uneven sintering occurred in the trolley' s lateral distribution, which affected the output and quality of sinter. In this study, the quantitative evaluation indices of the burden uniform distribution in the width direction of the sintering machine is introduced for the first time. By measuring the temperature of discharged gas, a plane temperature field is constructed. Through analyzing the temperature field and the burden layer' s differential thermal equilibrium, a mathematical model for evaluating the indices, which is an online reflection of the degree of uniform distribution, is built. Following the improvements in burden distribution equipment ,the optimization of the ignition system and the dynamic adjustment of the process ,the problem of uneven sintering in lateral distribution has been solved, and the quality and the yield of sinter have been improved.
基金supported by the National Key Research and Development Program of China (2016YFD0300407)the earmarked fund for China Agriculture Research System (CARS-03)
文摘Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniformly distributed population structure that increases RUE. In this study, we used tridimensional uniform sowing to create a wheat canopy within which light was spread evenly to increase RUE. This study was done during 2014-2016 in the Shunyi District, Beijing, China. The soil type was sandy loam. Wheat was grown in two sowing patterns: (1) tridimensional uniform sowing (U); (2) conventional drilling (D). Four planting densities were used: 1.8, 2.7, 3.6, and 4.5 million plants ha-1. Several indices were measured to compare the wheat canopies: photosynthetic active radiation intercepted by the canopy (IPAR), leaf area index (LAI), leaf mass per unit area (LMA), canopy extinction coefficient (K), and RUE. In two sowing patterns, the K values decreased with increasing planting density, but the K values of U were lower than that of D. LMA and IPAR were higher for U than for D, whereas LAI was nearly the same for both sowing patterns. IPAR and LAI increased with increasing density under the same sowing pattern. However, the difference in IPAR and LAI between the 3.6 and 4.5 million plants ha-1 treatments was not significant for both sowing patterns. Therefore, LAI within the same planting density was not affected by sowing pattern. RUE was the largest for the U mode with a planting density of 3.6 million plants ha-1 treatment. For the D sowing pattern, the lowest planting density (1.8 million plants ha-1) resulted in the highest yield. Light radiation interception was minimal for the D mode with a planting density of 1.8 million plants ha-1 treatment, but the highest RUE and highest yield were observed under this condition. For the U sowing pattern, IPAR increased with increasing planting density, but yield and RUE were the highest with a planting density of 3.6 million plants ha-1. These results indicated that the optimal planting density for improving the canopy light environment differed between the sowing patterns. The effect of sowing patternxplanting density interaction on grain yield, yield components, RUE, IPAR, and LMA was significant (P〈0.05). Correlation analysis indicated that there is a positive significant correlation between grain yield and RUE (t=0.880, P〈0.01), LMA (r=0.613, P〈0.05), andspike number (t=0.624, P〈0.05). These results demonstrated that the tridimensional uniform sowing technique, particularly at a planting density of 3.6 million plants ha-0, can effectively increase light interception and utilization and unit leaf area. This leads to the production of more photosynthetic products that in turn lead to significantly increased spike number (P〈0.05), kernel number, grain weight, and an overall increase in yield.