A biaxial rotational technique is proposed to improve the neutron irradiation uniformity for a large sample,and the theoretical method is established to predict and design the main parameters. The technique used a dev...A biaxial rotational technique is proposed to improve the neutron irradiation uniformity for a large sample,and the theoretical method is established to predict and design the main parameters. The technique used a device to rotate the target sample around two perpendicular axes simultaneously. Numerical calculations found that the lowest common multiple of the two angular speeds should be large enough to improve the uniformity,and the minimal experimental time should be no less than 600 s. For a three-dimensional sample with a size of 20 cm × 12 cm × 14 cm, the maximal non-uniform neutron irradiation factor of the sample is mainly determined by the distance between the center of the sample and of the point neutron source. It was computed to be less than 10% when the distance was no less than 34 cm. Experiments were carried out on the CFBR-II reactor and the experimental results were in good accordance with the theoretical analysis. As a result, the theoretical conclusions given above are reasonable and of reference value for the design of future irradiation experiments.展开更多
Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful...Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.展开更多
Currently,polarization visualization strategies are accomplished by mapping polarization information into a perceptually uniform color appearance model CAM02-UCS.However,the deviation of the CAM02-UCS space from the l...Currently,polarization visualization strategies are accomplished by mapping polarization information into a perceptually uniform color appearance model CAM02-UCS.However,the deviation of the CAM02-UCS space from the lightness prediction results in an inaccurate match between the polarization information and the perceptual information.In this paper,we propose a novel polarization visualization strategy based on the perceptual uniform space Jzazbz.The polarization visualization be completed by placing the polarization information into the lightness Jz,colorfulness Cz and hue angle hz channels of the Jzazbz space.The experimental results show that the proposed method can significantly improve the lightness of the low irradiance and high polarization region,hence more polarization information can be sensed by human visual system.展开更多
Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have bee n widely studied.However,The uncon trollable plating/strippi ng behavior,infinite volume change ...Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have bee n widely studied.However,The uncon trollable plating/strippi ng behavior,infinite volume change and den drites formation of lithium metal anode restrict the applicati on.The unc on trolled n ucleati on of lithium caused by the non uniform multi-physical field distributions,can lead to the undesirable lithium deposition.Herein,a graphene composite uniformly loaded with Ag nano-particles(Ag NPs)is prepared through a facile Gamma ray irradiation method and assembled into self-supported film with layered structure(Ag-rGO film).Whe n such film is used as a lithium metal an ode host,the uncontrolled deposition is converted into a highly nucleation-induced process.On one hand,the Ag NPs distributed between the in terlayers of graphe ne can preferentially induce lithium nu cleati on and en able uniform deposition morphology of lithium between interlayers.On the other hand,the stable layered graphene structure can accommodate volume change,stabilize the interface between anode and electrolyte and inhibit dendrites formation.Therefore,the layered Ag-rGO film as anode host can reach a high Coulombic efficiency over 93.3% for 200 cycle(786 h)at a current density of 1 mA cm^(-2) for 2 mAh cm^(-2) in carbonate-based electrolyte.This work proposes a facile Gamma ray irradiation method to prepare metal/3D-skeleton structure as lithium anode host and demonstrates the potential to regulate the lithium metal deposition behaviors via manipulating the distribution of lithiophilic metal(e.g.Ag)in 3D frameworks.This may offer a practicable thinking for the subsequent design of the lithium metal anode.展开更多
We propose and demonstrate a scheme to smooth and shape the on-target patterns in multimode fiber lasers, which includes expanding-collimating system and lens array (LA). A smooth pattern with flat-top and sharp-edg...We propose and demonstrate a scheme to smooth and shape the on-target patterns in multimode fiber lasers, which includes expanding-collimating system and lens array (LA). A smooth pattern with flat-top and sharp-edge profiles can be obtained with the irradiation nonuniformity decreasing significantly. We analyze the effects of the parameters such as defocus distance, the tilt angles, the number of the incident fiber lasers, and the diffraction-weakened LA on the uniformity irradiation of target by numerical simulations.展开更多
基金Supported by the National Science Foundation of China(No.11305152)the Science and Technology Development Foundation of CAEP(Nos.2014B0103006 and 2012A0103002)
文摘A biaxial rotational technique is proposed to improve the neutron irradiation uniformity for a large sample,and the theoretical method is established to predict and design the main parameters. The technique used a device to rotate the target sample around two perpendicular axes simultaneously. Numerical calculations found that the lowest common multiple of the two angular speeds should be large enough to improve the uniformity,and the minimal experimental time should be no less than 600 s. For a three-dimensional sample with a size of 20 cm × 12 cm × 14 cm, the maximal non-uniform neutron irradiation factor of the sample is mainly determined by the distance between the center of the sample and of the point neutron source. It was computed to be less than 10% when the distance was no less than 34 cm. Experiments were carried out on the CFBR-II reactor and the experimental results were in good accordance with the theoretical analysis. As a result, the theoretical conclusions given above are reasonable and of reference value for the design of future irradiation experiments.
文摘Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.
基金This work was supported by the Key Research and Development Program of Shaanxi(2018ZDXM-GY-091)the National Key Research and Development Project of China(2018YFB1309403)+2 种基金the Natural National Science Foundation of China(61805199)Natural Science Basic Research Plan in Shaanxi Province of China(2018JQ6065)We would like to sincerely thank all reviewers for their helpful comments and suggestions.
文摘Currently,polarization visualization strategies are accomplished by mapping polarization information into a perceptually uniform color appearance model CAM02-UCS.However,the deviation of the CAM02-UCS space from the lightness prediction results in an inaccurate match between the polarization information and the perceptual information.In this paper,we propose a novel polarization visualization strategy based on the perceptual uniform space Jzazbz.The polarization visualization be completed by placing the polarization information into the lightness Jz,colorfulness Cz and hue angle hz channels of the Jzazbz space.The experimental results show that the proposed method can significantly improve the lightness of the low irradiance and high polarization region,hence more polarization information can be sensed by human visual system.
基金support from the National Natural Science Foundation of China(Grant No.21875195,21875198 and 22005257)the Fundamental Research Funds for the Central Universities(20720190040).
文摘Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have bee n widely studied.However,The uncon trollable plating/strippi ng behavior,infinite volume change and den drites formation of lithium metal anode restrict the applicati on.The unc on trolled n ucleati on of lithium caused by the non uniform multi-physical field distributions,can lead to the undesirable lithium deposition.Herein,a graphene composite uniformly loaded with Ag nano-particles(Ag NPs)is prepared through a facile Gamma ray irradiation method and assembled into self-supported film with layered structure(Ag-rGO film).Whe n such film is used as a lithium metal an ode host,the uncontrolled deposition is converted into a highly nucleation-induced process.On one hand,the Ag NPs distributed between the in terlayers of graphe ne can preferentially induce lithium nu cleati on and en able uniform deposition morphology of lithium between interlayers.On the other hand,the stable layered graphene structure can accommodate volume change,stabilize the interface between anode and electrolyte and inhibit dendrites formation.Therefore,the layered Ag-rGO film as anode host can reach a high Coulombic efficiency over 93.3% for 200 cycle(786 h)at a current density of 1 mA cm^(-2) for 2 mAh cm^(-2) in carbonate-based electrolyte.This work proposes a facile Gamma ray irradiation method to prepare metal/3D-skeleton structure as lithium anode host and demonstrates the potential to regulate the lithium metal deposition behaviors via manipulating the distribution of lithiophilic metal(e.g.Ag)in 3D frameworks.This may offer a practicable thinking for the subsequent design of the lithium metal anode.
基金supported by the National Natural Science Foundation of China under Grant No.11374285
文摘We propose and demonstrate a scheme to smooth and shape the on-target patterns in multimode fiber lasers, which includes expanding-collimating system and lens array (LA). A smooth pattern with flat-top and sharp-edge profiles can be obtained with the irradiation nonuniformity decreasing significantly. We analyze the effects of the parameters such as defocus distance, the tilt angles, the number of the incident fiber lasers, and the diffraction-weakened LA on the uniformity irradiation of target by numerical simulations.