Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of partic...Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of particle breakage on the CSL is mainly attributed to the change in GSD due to particle breakage.However,GSD has not been properly considered in modeling the CSL with influence of particle breakage.This study aims to propose a quantitative model to determine the CSL considering the effect of GSD.We hypothesize that the change of critical state void ratio with respect to GSD is caused by the same mechanism that influences of the change of minimum void ratio with respect to GSD.Consequently,the particle packing model for minimum void ratio proposed by Chang et al.(2017)is extended to predict critical state void ratio.The developed model is validated by experimental results of CSLs for several types of granular materials.Then the evolution of GSD due to particle breakage is incorporated into the model.The model is further evaluated using the experimental results on rockfill material,which illustrates the applicability of the model in predicting CSL for granular material with particle breakage.展开更多
Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfa...Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfall.In this study,the runoff,sediment yields,and effective/ultimate PSD were measured under two conventional tillage practices,downhill ridge tillage(DT)and plat tillage(PT)and three soil conservation practices,contour ridge tillage(CT),mulching with downhill ridge tillage(MDT),and mulching with contour ridge tillage(MCT)during 21 natural rainfall events in the lower Jinsha River.The results showed that(1)soil conservation practices had a significant effect on soil erosion.The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm)and sediment yield(0.01 to 3.19 t hm^(-2)).Compared with DT,the annual runoff depths and sediment yields of CT,MDT and MCT decreased by 12.24%-49.75%and 40.79%-88.30%,respectively.(2)Soil conservation practices can reduce the decomposition of aggregates in sediments.The ratios of effective and ultimate particle size(E/U)of siltand sand-sized particles of DT and PT plots were close to 1,indicating that they were transported as primary particles,however,values lower/greater than 1 subject to CT,MDT and MCT plots indicated they were transported as aggregates.The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3)The sediments of soil conservation practices were more selective than those of conventional tillage practices.For CT,MDT and MCT plots,the average enrichment ratios(ERs)of clay,silt and sand were 1.99,1.93 and 0.42,respectively,with enrichment of clay and silt and depletion of sand in sediments.However,the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil.These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment,and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China.展开更多
Land use changes from natural ecosystems into managed ecosystems resulted in negative impact on soil structure and quality. The purpose of this study was to determine the influences of different land-use types on phys...Land use changes from natural ecosystems into managed ecosystems resulted in negative impact on soil structure and quality. The purpose of this study was to determine the influences of different land-use types on physical and chemical properties of soils in Sulaimani governorate. Land use systems including natural forest, pastureland and agriculture were identified. Ten of soil samples were collected from the 0 - 30 cm depth, and some soil physical and chemical properties of soil were determined. The land use alters from forest to agriculture resulting in significant decrease in organic matter, calcium carbonate and soil surface area and with this change, dispersion ratio affected on the physical property. The value of DR was highest in the Zrguezi Gawra cultivated with Cucumber and the lowest value in Dukan is 13%, and correlation coefficient between dispersion DR with sand, silt and bulk density is positive, value is (0.4979, 0.0126 and 0.7536) respectively, and with clay and specific surface area (SSA) the correlation coefficient value is (-0.7281 and -0.4466).展开更多
The vanadium-titanium magnetite concentrate from Panxi region of China was pretreated by high pressure roller grinding( HPRG) and then used in pelletization. Size distribution change of the vanadiumtitanium magnetit...The vanadium-titanium magnetite concentrate from Panxi region of China was pretreated by high pressure roller grinding( HPRG) and then used in pelletization. Size distribution change of the vanadiumtitanium magnetite concentrate after HPRG and the improvement of its green pellet strength were investigated. The results indicated that,besides the increase of fine particles,the vanadium-titanium magnetite concentrate after HPRG had a smaller size ratio of fine particle to coarse particle of 0. 126,meaning a lower porosity,compared with the size ratio of raw material of 0. 157. The concentrate particles were more closely packed when there was a smaller size ratio of fine particle to coarse particle. The particle packing in the green pellets was closer after HPRG,which strengthened the green pellets with an average drop number of 5. 1( drop height of 0. 5 m) and average compressive strength of 13. 1 N per pellet of 11 mm in diameter.展开更多
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shea...Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson's ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson's ratio depend uniquely on the soil's coordination number.展开更多
The goal of this paper is to assess the effects of particle and specific gravity characteristics (e.g. shape, size, and specific gravity) on the limiting void ratios emax and emin of granular matter. To assess the eff...The goal of this paper is to assess the effects of particle and specific gravity characteristics (e.g. shape, size, and specific gravity) on the limiting void ratios emax and emin of granular matter. To assess the effect of specific gravity, two different types of materials—glass beads and natural sands—were used. Particle characteristics such as roundness (R), sphericity (S) regularity (p), the average of R and S, were calculated through image analysis techniques after obtaining high-quality microscope images of individual grains. The German DIN standards were strictly followed to determine the extremities of the void ratio. Exper-imental data were used to investigate the effects of the particle characteristics on the relative density of soils. The results show the significant effect of the mean grain size (D50) on the extreme void ratios of poorly graded glass as well as the significant effect of Cu but negligible effect of Dso on the extreme void ratios of sand. The effect of the specific gravity of the materials was also examined. The results were used to develop models dependent on both particle shape and specific gravity, which were validated by comparison with results of previous studies.展开更多
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
基金supported by the National Science Foundation of the United States under a research grant (CMMI-1917238)
文摘Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of particle breakage on the CSL is mainly attributed to the change in GSD due to particle breakage.However,GSD has not been properly considered in modeling the CSL with influence of particle breakage.This study aims to propose a quantitative model to determine the CSL considering the effect of GSD.We hypothesize that the change of critical state void ratio with respect to GSD is caused by the same mechanism that influences of the change of minimum void ratio with respect to GSD.Consequently,the particle packing model for minimum void ratio proposed by Chang et al.(2017)is extended to predict critical state void ratio.The developed model is validated by experimental results of CSLs for several types of granular materials.Then the evolution of GSD due to particle breakage is incorporated into the model.The model is further evaluated using the experimental results on rockfill material,which illustrates the applicability of the model in predicting CSL for granular material with particle breakage.
基金funded by the Key Project of China National Tobacco Corporation Sichuan Province Company(Grants No.SCYC201802)CAS President’s International Fellowship Initiative(Grants No.2019VEA0032)。
文摘Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfall.In this study,the runoff,sediment yields,and effective/ultimate PSD were measured under two conventional tillage practices,downhill ridge tillage(DT)and plat tillage(PT)and three soil conservation practices,contour ridge tillage(CT),mulching with downhill ridge tillage(MDT),and mulching with contour ridge tillage(MCT)during 21 natural rainfall events in the lower Jinsha River.The results showed that(1)soil conservation practices had a significant effect on soil erosion.The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm)and sediment yield(0.01 to 3.19 t hm^(-2)).Compared with DT,the annual runoff depths and sediment yields of CT,MDT and MCT decreased by 12.24%-49.75%and 40.79%-88.30%,respectively.(2)Soil conservation practices can reduce the decomposition of aggregates in sediments.The ratios of effective and ultimate particle size(E/U)of siltand sand-sized particles of DT and PT plots were close to 1,indicating that they were transported as primary particles,however,values lower/greater than 1 subject to CT,MDT and MCT plots indicated they were transported as aggregates.The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3)The sediments of soil conservation practices were more selective than those of conventional tillage practices.For CT,MDT and MCT plots,the average enrichment ratios(ERs)of clay,silt and sand were 1.99,1.93 and 0.42,respectively,with enrichment of clay and silt and depletion of sand in sediments.However,the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil.These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment,and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China.
文摘Land use changes from natural ecosystems into managed ecosystems resulted in negative impact on soil structure and quality. The purpose of this study was to determine the influences of different land-use types on physical and chemical properties of soils in Sulaimani governorate. Land use systems including natural forest, pastureland and agriculture were identified. Ten of soil samples were collected from the 0 - 30 cm depth, and some soil physical and chemical properties of soil were determined. The land use alters from forest to agriculture resulting in significant decrease in organic matter, calcium carbonate and soil surface area and with this change, dispersion ratio affected on the physical property. The value of DR was highest in the Zrguezi Gawra cultivated with Cucumber and the lowest value in Dukan is 13%, and correlation coefficient between dispersion DR with sand, silt and bulk density is positive, value is (0.4979, 0.0126 and 0.7536) respectively, and with clay and specific surface area (SSA) the correlation coefficient value is (-0.7281 and -0.4466).
文摘The vanadium-titanium magnetite concentrate from Panxi region of China was pretreated by high pressure roller grinding( HPRG) and then used in pelletization. Size distribution change of the vanadiumtitanium magnetite concentrate after HPRG and the improvement of its green pellet strength were investigated. The results indicated that,besides the increase of fine particles,the vanadium-titanium magnetite concentrate after HPRG had a smaller size ratio of fine particle to coarse particle of 0. 126,meaning a lower porosity,compared with the size ratio of raw material of 0. 157. The concentrate particles were more closely packed when there was a smaller size ratio of fine particle to coarse particle. The particle packing in the green pellets was closer after HPRG,which strengthened the green pellets with an average drop number of 5. 1( drop height of 0. 5 m) and average compressive strength of 13. 1 N per pellet of 11 mm in diameter.
基金The work presented in this paper was supported by the National Natural Science Foundation of China (Grant Nos. 51308408, 41272291,51238009) and the Fundamental Research Funds for the Central Universities, and the Open Foundation of State Key Labo- ratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2014492311 ).
文摘Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson's ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson's ratio depend uniquely on the soil's coordination number.
文摘The goal of this paper is to assess the effects of particle and specific gravity characteristics (e.g. shape, size, and specific gravity) on the limiting void ratios emax and emin of granular matter. To assess the effect of specific gravity, two different types of materials—glass beads and natural sands—were used. Particle characteristics such as roundness (R), sphericity (S) regularity (p), the average of R and S, were calculated through image analysis techniques after obtaining high-quality microscope images of individual grains. The German DIN standards were strictly followed to determine the extremities of the void ratio. Exper-imental data were used to investigate the effects of the particle characteristics on the relative density of soils. The results show the significant effect of the mean grain size (D50) on the extreme void ratios of poorly graded glass as well as the significant effect of Cu but negligible effect of Dso on the extreme void ratios of sand. The effect of the specific gravity of the materials was also examined. The results were used to develop models dependent on both particle shape and specific gravity, which were validated by comparison with results of previous studies.