Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing f...Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.展开更多
To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate,...To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.展开更多
The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpol...The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.展开更多
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini...High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.展开更多
This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This techni...This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.展开更多
A new approach for NURBS(Non-uniform rational B-spline) curve and surface fitting for measured points was presented which employs a fairing method applied to digitized point data with discrete curvature. If measured p...A new approach for NURBS(Non-uniform rational B-spline) curve and surface fitting for measured points was presented which employs a fairing method applied to digitized point data with discrete curvature. If measured points are used as control points to construct an NURBS curve, then the curvature of each data point corresponding to control point of the constructed curve can be computed. According to the convex hull and local properties of NURBS, based on the curvatures obtained, the measured points can be faired. If faired measured points are used as target points to modify, the constructed curve passing through these faired points can produce a smooth NURBS curve. This paper also presented the justification for utilizing the curvatures of constructed NURBS curve instead of the conventional interpolated curve to fair the measured points. Based on the presented algorithms, some qualities of the constructed curves can be improved.展开更多
为使纬编针织物具有更真实的力学效果和体积感,在改进的弹簧-质点模型基础上对线圈进行结构建模。同时采用插值算法,在相邻型值点间插入2个新的型值点,用非均匀有理B样条曲线(NURBS)连接线圈型值点,解决了NURBS不能穿过所有型值点的问...为使纬编针织物具有更真实的力学效果和体积感,在改进的弹簧-质点模型基础上对线圈进行结构建模。同时采用插值算法,在相邻型值点间插入2个新的型值点,用非均匀有理B样条曲线(NURBS)连接线圈型值点,解决了NURBS不能穿过所有型值点的问题。为模拟股线的捻度,以此样条曲线为几何中心,用4根圆柱围绕,通过对相邻型值点的空间坐标计算3个相对欧拉角,对圆柱进行相应的旋转变换。测量了真实线圈的形变量,分析出线圈形变量与质点位移量的关系来模拟线圈变形。用Velocity-Verlet数值积分方法求解力学方程,计算各质点位移。借助于Microsoft Visual Studio 2010集成开发工具和Open GL三维绘图函数库,在计算机上实现了纬编织物的三维建模和变形仿真。展开更多
文摘Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.
基金The Doctoral Fund of Ministry of Education of China(No.20090092110052)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJA460002)College Industrialization Project of Jiangsu Province(No.JHB2012-21)
文摘To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.
文摘The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.
基金funded by the Zhejiang Province Science and Technology Plan Project under grant number 2023C01069the Hebei Provincial Program on Key Basic Research Project under grant number 23311808Dthe Wenzhou Major Science and Technology Innovation Project of China under grant number ZG2022004。
文摘High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.
基金This work was supported by Tianjin Natural Science Fund Supporting Project (05YFJZJ)
文摘This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.
基金The Rising Star Project of Shanghai (No.06QA14026) The International Coopera-tion Project of Shanghai (No.41107049)
文摘A new approach for NURBS(Non-uniform rational B-spline) curve and surface fitting for measured points was presented which employs a fairing method applied to digitized point data with discrete curvature. If measured points are used as control points to construct an NURBS curve, then the curvature of each data point corresponding to control point of the constructed curve can be computed. According to the convex hull and local properties of NURBS, based on the curvatures obtained, the measured points can be faired. If faired measured points are used as target points to modify, the constructed curve passing through these faired points can produce a smooth NURBS curve. This paper also presented the justification for utilizing the curvatures of constructed NURBS curve instead of the conventional interpolated curve to fair the measured points. Based on the presented algorithms, some qualities of the constructed curves can be improved.
文摘为使纬编针织物具有更真实的力学效果和体积感,在改进的弹簧-质点模型基础上对线圈进行结构建模。同时采用插值算法,在相邻型值点间插入2个新的型值点,用非均匀有理B样条曲线(NURBS)连接线圈型值点,解决了NURBS不能穿过所有型值点的问题。为模拟股线的捻度,以此样条曲线为几何中心,用4根圆柱围绕,通过对相邻型值点的空间坐标计算3个相对欧拉角,对圆柱进行相应的旋转变换。测量了真实线圈的形变量,分析出线圈形变量与质点位移量的关系来模拟线圈变形。用Velocity-Verlet数值积分方法求解力学方程,计算各质点位移。借助于Microsoft Visual Studio 2010集成开发工具和Open GL三维绘图函数库,在计算机上实现了纬编织物的三维建模和变形仿真。