The side-glowing optical fibers (SOFs) were chosen as the conducting medium of endogenous light; and 20 mg·L-1 methylene blue was chosen as the target to be degraded. The SOF is made up of quartz core with a sili...The side-glowing optical fibers (SOFs) were chosen as the conducting medium of endogenous light; and 20 mg·L-1 methylene blue was chosen as the target to be degraded. The SOF is made up of quartz core with a silicon cladding, which can emit light through side surface more uniformly and transmit light for longer distance to avoid attenuation of light by liquid medium. The filament lamp was chosen as visible light source. Different reaction conditions, such as the presence of optical fiber or not, the quantity of SOF, light irradiation intensity were tested by measuring the methylene blue degradation of methylene blue. The results show that suitable reaction conditions were 1.167 g·L-1 Ag + /TiO 2 with 7% (by mass) of Ag + doped in TiO 2 , and 500 roots of SOF (30 cm length in solution). The photocatalytic degradation efficiency under 300W lamp irradiation for 8h was about 97%. And the photocatalytic degradation efficiency of methylene blue degradation was proportional to SOF quantity, light irradiation intensity and catalytic dosage within a certain range. Compared with general UV and visible light SOFs could save a huge amount of energy and cost, in the potential applications in dealing with organic pollutants on a large scale.展开更多
In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are car...In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are carried out and then the modeling scheme of few-mode multicore optical fiber channel based on non-uniform mode field distribution is put forward. The proposed modeling scheme can not only exponentially increases the system capacity through fewmode multi-core optical fiber channel, but has better transmission performance compared to the channel of the same type to the uniform channel revealing from the simulation results.展开更多
In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto--opfic modulators (UFBG-AOM). The simu...In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto--opfic modulators (UFBG-AOM). The simulation results demon- strate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-l) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.展开更多
Different approaches have been introduced for the daylighting system to reduce energy consumption, but they were not populated due to complex, high cost, and insufficient designs. There has been a recent problem in ac...Different approaches have been introduced for the daylighting system to reduce energy consumption, but they were not populated due to complex, high cost, and insufficient designs. There has been a recent problem in achieving uniform distribution of sunlight at a destination deep inside the building. Therefore, we propose a system to achieve high illumination by illuminating the surface of the absorber (optical fibers) uniformly. To capture sunlight, parabolic reflector and Fresnel lens are used. Different reflectors and lenses are considered, compared, and investigated to direct uniform light, which solves the heat problem, into the optical fibers. In addition, this study includes comparison between fiber-based daylighting systems. The proposed system has been verified through simulation and experimental results.展开更多
文摘The side-glowing optical fibers (SOFs) were chosen as the conducting medium of endogenous light; and 20 mg·L-1 methylene blue was chosen as the target to be degraded. The SOF is made up of quartz core with a silicon cladding, which can emit light through side surface more uniformly and transmit light for longer distance to avoid attenuation of light by liquid medium. The filament lamp was chosen as visible light source. Different reaction conditions, such as the presence of optical fiber or not, the quantity of SOF, light irradiation intensity were tested by measuring the methylene blue degradation of methylene blue. The results show that suitable reaction conditions were 1.167 g·L-1 Ag + /TiO 2 with 7% (by mass) of Ag + doped in TiO 2 , and 500 roots of SOF (30 cm length in solution). The photocatalytic degradation efficiency under 300W lamp irradiation for 8h was about 97%. And the photocatalytic degradation efficiency of methylene blue degradation was proportional to SOF quantity, light irradiation intensity and catalytic dosage within a certain range. Compared with general UV and visible light SOFs could save a huge amount of energy and cost, in the potential applications in dealing with organic pollutants on a large scale.
基金supports from National High Technology 863 Program of China(No.2013AA013403,2015AA015501,2015AA015502,2015AA015504)National NSFC(No.61425022/61522501/61307086/61475024/61275158/61201151/61275074/61372109)+4 种基金Beijing Nova Program(No.Z141101001814048)Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20121001302)the Universities Ph.D.Special Research Funds(No.20120005110003/20120005120007)Fund of State Key Laboratory of IPOC(BUPT)P.R.China
文摘In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are carried out and then the modeling scheme of few-mode multicore optical fiber channel based on non-uniform mode field distribution is put forward. The proposed modeling scheme can not only exponentially increases the system capacity through fewmode multi-core optical fiber channel, but has better transmission performance compared to the channel of the same type to the uniform channel revealing from the simulation results.
基金supported by the National Natural Science Foundation of China(Grant No.61275076)
文摘In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto--opfic modulators (UFBG-AOM). The simulation results demon- strate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-l) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.
文摘Different approaches have been introduced for the daylighting system to reduce energy consumption, but they were not populated due to complex, high cost, and insufficient designs. There has been a recent problem in achieving uniform distribution of sunlight at a destination deep inside the building. Therefore, we propose a system to achieve high illumination by illuminating the surface of the absorber (optical fibers) uniformly. To capture sunlight, parabolic reflector and Fresnel lens are used. Different reflectors and lenses are considered, compared, and investigated to direct uniform light, which solves the heat problem, into the optical fibers. In addition, this study includes comparison between fiber-based daylighting systems. The proposed system has been verified through simulation and experimental results.