As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially foll...As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially following a strong earthquake, is one of common geological disasters known in rock slope engineering. Therefore, it is important to study the collapse mechanism of dangerous rock masses induced by an earthquake and the analysis approach of its stability. This study provides a simple and convenient method to determine the collapse mechanisms of two types of dangerous rock masses (i.e. cantilever and upright) associated with the definition and calculation of the safety factor, which is based on the flexure theory of a constant-section beam by combining with the maximum tensile-stress criterion to depict the process of crack propagation caused by seismic waves. The calculation results show that there are critical crack depths in each form of the dangerous rock masses. Once the accumulated depth of the crack growth during an earthquake exceeds the critical depth, the collapse will occur. It is also demonstrated that the crack extension amount of each step is not a constant value, and is closely associated with the current accumulated crack depth. The greater the cumulative crack depth, the more easily the crack propagates. Finally, the validity and applicability of the proposed method are verified through two actual engineering examples.展开更多
A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
Seismic design should quantitatively evaluate and control the risk of earthquake-induced collapse that a building structure may experience during its design service life. This requires taking into consideration both t...Seismic design should quantitatively evaluate and control the risk of earthquake-induced collapse that a building structure may experience during its design service life. This requires taking into consideration both the collapse resistant capacity of the building and the earthquake ground motion demand. The fundamental concept of uniform-risk-targeted seismic design and its relevant assessment process are presented in this paper. The risks of earthquake-induced collapse for buildings located in three seismic regions with the same prescribed seismic fortification intensity but different actual seismic hazards are analyzed to il- lustrate the engineering significance of uniform-risk-targeted seismic design. The results show that with China's current seis- mic design method, the risk of earthquake-induced collapse of buildings varies greatly from site to site. Additional research is needed to further develop and implement the uniform-risk-targeted seismic design aoDroach oronnsed in thi~ nnner展开更多
The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and an...The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.展开更多
基金Scientific Research Fund of the Hebei Education Department under Grant No.QN2015166
文摘As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially following a strong earthquake, is one of common geological disasters known in rock slope engineering. Therefore, it is important to study the collapse mechanism of dangerous rock masses induced by an earthquake and the analysis approach of its stability. This study provides a simple and convenient method to determine the collapse mechanisms of two types of dangerous rock masses (i.e. cantilever and upright) associated with the definition and calculation of the safety factor, which is based on the flexure theory of a constant-section beam by combining with the maximum tensile-stress criterion to depict the process of crack propagation caused by seismic waves. The calculation results show that there are critical crack depths in each form of the dangerous rock masses. Once the accumulated depth of the crack growth during an earthquake exceeds the critical depth, the collapse will occur. It is also demonstrated that the crack extension amount of each step is not a constant value, and is closely associated with the current accumulated crack depth. The greater the cumulative crack depth, the more easily the crack propagates. Finally, the validity and applicability of the proposed method are verified through two actual engineering examples.
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90815025,51178249)the Tsinghua University Research Funds (Grant Nos. 2010THZ02-1,2010Z01001)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0528)
文摘Seismic design should quantitatively evaluate and control the risk of earthquake-induced collapse that a building structure may experience during its design service life. This requires taking into consideration both the collapse resistant capacity of the building and the earthquake ground motion demand. The fundamental concept of uniform-risk-targeted seismic design and its relevant assessment process are presented in this paper. The risks of earthquake-induced collapse for buildings located in three seismic regions with the same prescribed seismic fortification intensity but different actual seismic hazards are analyzed to il- lustrate the engineering significance of uniform-risk-targeted seismic design. The results show that with China's current seis- mic design method, the risk of earthquake-induced collapse of buildings varies greatly from site to site. Additional research is needed to further develop and implement the uniform-risk-targeted seismic design aoDroach oronnsed in thi~ nnner
基金Acknowledgement The authors of this paper thank the financial support from National Natural Science Foundation of China through project No.50478096.
文摘The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.