期刊文献+
共找到26,925篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing mixing uniformity in microreactors via in-line spectroscopy
1
作者 Shusaku Asano Shinji Kudo +3 位作者 Taisuke Maki Yosuke Muranaka Kazuhiro Mae Jun-ichiro Hayashi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期119-124,共6页
Mixing behavior is critical for enhancing the selectivity of fast chemical reactions in microreactors.A high Reynolds number(Re)improves the mixing rate and selectivity of the reactions,but some exceptions of increasi... Mixing behavior is critical for enhancing the selectivity of fast chemical reactions in microreactors.A high Reynolds number(Re)improves the mixing rate and selectivity of the reactions,but some exceptions of increasing side product yield with the higher Re have been reported.This study investigated the mixing uniformity in microreactors with in-line UV-vis spectroscopy to clarify the relationship between reaction selectivity and chaotic mixing with the higher Re.A colorization experiment of thymolphthalein in an acidic solution was conducted with an excess acid amount to the base to indicate a non-uniformly mixed region.Non-uniformity significantly increased with Re.At the same time,the degree of mixing,which was measured by a usual decolorization experiment,showed that the mixing rate increased with Re.The in-line analysis of the Villermaux-Dushman reaction during the mixing clarified that side product yield significantly increased with Re at around 300 and then decreased at around 1100.These results suggest the compensation effect between the mixing uniformity and mixing rate on the selectivity of the mixing-sensitive reactions.Faster mixing,characterized by a larger Re,can disturb mixing uniformity and,in some cases,decrease reaction selectivity. 展开更多
关键词 MICROREACTOR Villermaux-Dushman reaction In-line analysis MIXING Mass transfer uniformity
下载PDF
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
2
作者 王森 张权治 +2 位作者 马方方 Maksudbek YUSUPOV 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
Uniformity Control of Scanned Beam in 300 MeV Proton and Heavy Ion Accelerator Complex at SESRI
3
作者 HOU Lingxiao YUAN Youjin +10 位作者 SHEN Guodong RUAN Shuang LIU Jie ZHU Yunpeng WANG Geng GUO Hongliang LYU Mingbang GAO Daqing XU Zhiguo SHENG Lina YANG Jiancheng 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第4期705-713,共9页
In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiat... In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiation area is required for the extracted ion beams,which is crucial because it directly affects the experimental precision and therapeutic effect.Specifically,ultra-large-area and high-uniformity scanning are crucial requirements for spacecraft radiation effects assessment and serve as core specification for beamline terminal design.In the 300 MeV proton and heavy ion accelerator complex at the Space Environment Simulation and Research Infrastructure(SESRI),proton and heavy ion beams will be accelerated and ultimately delivered to three irradiation terminals.In order to achieve the required large irradiation area of 320 mm×320 mm,horizontal and vertical scanning magnets are used in the extraction beam line.However,considering the various requirements for beam species and energies,the tracking accuracy of power supplies(PSs),the eddy current effect of scanning magnets,and the fluctuation of ion bunch structure will reduce the irradiation uniformity.To mitigate these effects,a beam uniformity optimization method based on the measured beam distribution was proposed and applied in the accelerator complex at SESRI.In the experiment,the uniformity is successfully optimized from 75%to over 90%after five iterations of adjustment to the PS waveforms.In this paper,the method and experimental results were introduced. 展开更多
关键词 heavy ion accelerator beam uniformity scanning magnet MIC
下载PDF
Experimental Study on Gas Flow Uniformity in a Diesel Particulate Filter Carrier
4
作者 Zhengyong Wang Jianhua Zhang +5 位作者 Guoliang Su Peixing Yang Xiantao Fan Shuzhan Bai Ke Sun Guihua Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期193-204,共12页
A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relative... A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF. 展开更多
关键词 DPF flow uniformity DTI silicon carbide carrier soot load
下载PDF
Effect of coil and chamber structure on plasma radial uniformity in radio frequency inductively coupled plasma
5
作者 赵洋 周晓华 +2 位作者 高升荣 宋莎莎 赵玉真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期58-66,共9页
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m... Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity. 展开更多
关键词 inductively coupled plasma fluid simulation optimized coil chamber aspect ratio plasma uniformity
下载PDF
Harmonic balance simulation of the influence of component uniformity and reliability on the performance of a Josephson traveling wave parametric amplifier
6
作者 郑煜臻 熊康林 +1 位作者 冯加贵 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期339-343,共5页
A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A ... A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes. 展开更多
关键词 Josephson traveling wave parametric amplifier(JTWPA) harmonic balance method YIELDS uniformity
下载PDF
Demonstration of Center Pivot Uniformity Evaluation and Retrofit to Improve Water Use Efficiency
7
作者 Younsuk Dong Lyndon Kelley Eric Anderson 《Journal of Water Resource and Protection》 CAS 2023年第3期71-84,共14页
Agricultural irrigation is a primary user for freshwater withdrawal. Irrigation plays an important role in crop production, as it provides the benefit of reducing the effects of prolonged dryness and erratic precipita... Agricultural irrigation is a primary user for freshwater withdrawal. Irrigation plays an important role in crop production, as it provides the benefit of reducing the effects of prolonged dryness and erratic precipitation. Center pivot irrigation system is the most common irrigation system in agriculture. As the center pivot irrigation system ages, the system could develop a leaking joint, clogged sprinklers, and physical damage. This can cause areas of non-uniformity that can lead to under- or over-irrigated in some areas of the land, resulting in excess energy use and cost, wasting resources, and environmental impacts. Thus, it is important to evaluate the performance of a center pivot irrigation system regularly to maximize return on investments and minimize wasting resources. This study focuses on evaluating the impacts and benefits of improved center pivot irrigation distribution uniformity by performing distribution uniformity evaluations pre- and post-retrofit. This study also focused on demonstrating an unmanned aerial vehicle (UAV) to assess the performance of the center pivot irrigation system in two irrigated farmlands. The Coefficient of Uniformity (CU), Distribution Uniformity (DU), and Scheduling Coefficient (SC) were calculated based on the catch can test data. The values were utilized to evaluate water and energy savings from the improved coefficients. The team has found that replacing sprinkler packages increased the CU from 78 to 89 and the DU from 77 to 82, and reduced the SC from 1.3 to 1.2 in Field A. In Field B, replacing sprinkler packages increased the CU from 73 to 91 and the DU from 62 to 84 and reduced the SC from 1.6 to 1.2. The estimated water savings in Field A due to the reduced scheduling coefficient was approximately 151,000 liters/hectare/year, with consideration of the corn and soybean rotation field in Michigan. The estimated water savings in Field B was 608,000 liters/hectare/year. The data from this demonstration study showed the value of distribution uniformity evaluation and retrofit of irrigation systems. This information will encourage farmers and agricultural industries to consider performing more distribution uniformity evaluations, ultimately improving irrigation water use efficiency and supporting sustainable water management in agriculture. 展开更多
关键词 Center Pivot IRRIGATION uniformity Sprinkler System Evaluation Water Saving UAV
下载PDF
Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters
8
作者 张东璇 余俊贤 +3 位作者 李梦遥 潘杰 刘峰 方志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期31-41,共11页
Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable f... Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable for wide applications.In this work,the ns pulse power supply is used to excite Ar DBD and the influences of the pulse parameters(voltage amplitude,pulse width,pulse rise and fall times)on the DBD uniformity are investigated.The gas gap voltage(Ug)and conduct current(Ig)are separated from the measured voltage and current waveforms to analyze the influence of electrical parameters.The spectral line intensity ratio of two Ar excited species is used as an indicator of the electron temperature(Te).The time resolved discharge processes are recorded by an intensified charge-coupled device camera and a one-dimensional fluid model is employed to simulate the spatial and temporal distributions of electrons,ions,metastable argon atoms and Te.Combining the experimental and numerical results,the mechanism of the pulse parameters influencing on the discharge uniformity is discussed.It is shown that the space electric field intensity and the space particles'densities are mainly responsible for the variation of discharge uniformity.With the increase of voltage and pulse width,the electric field intensity and the density of space particles increased,which results in the discharge mode transition from non-uniform to uniform,and then non-uniform.Furthermore,the extension of pulse rise and fall times leads to the discharge transition from uniform to nonuniform.The results are helpful to reveal the mechanism of ns pulsed DBD mode transition and to realize controllable and uniform plasma sources at atmospheric pressure. 展开更多
关键词 nanosecond pulse dielectric barrier discharge electrical characteristics active particle uniformity
下载PDF
Design and Structure Optimization of Plenum Chamber with Airfoil Baffle to Improve Its Outlet Velocity Uniformity in Heat Setting Machines
9
作者 钱淼 魏鹏郦 +2 位作者 林子杰 向忠 胡旭东 《Journal of Donghua University(English Edition)》 CAS 2023年第5期515-524,共10页
The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly af... The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine. 展开更多
关键词 velocity distribution uniformity structure optimization numerical simulation AIRFOIL plenum chamber heat setting
下载PDF
Low-Complexity Reconstruction of Covariance Matrix in Hybrid Uniform Circular Array
10
作者 Fu Zihao Liu Yinsheng Duan Hongtao 《China Communications》 SCIE CSCD 2024年第3期66-74,共9页
Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc... Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach. 展开更多
关键词 hybrid array MILLIMETER-WAVE spatial covariance matrix uniform circular array
下载PDF
Frost deformation and microstructure evolution of porous rock under uniform and unidirectional freeze-thaw conditions
11
作者 LV Zhitao LIU Jintao +1 位作者 WAN Ling LIU Weiping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2855-2869,共15页
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece... The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale. 展开更多
关键词 Frost deformation Microstructure evolution Porous rock Unidirectional freeze-thaw cycles uniform freeze-thaw cycles
下载PDF
Research on the design method for uniform wear of shield cutters in sand-pebble strata
12
作者 Jinxun Zhang Bo Li +4 位作者 Guihe Wang Yusheng Jiang Hua Jiang Minglun Yin Zhengyang Sun 《Deep Underground Science and Engineering》 2024年第2期216-230,共15页
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ... During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata. 展开更多
关键词 cutter wear EDEM model long-distance shield driving sand-pebble stratum shield tunnel uniform wear design method
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
13
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 Unmanned aerial vehicle(UAV) uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
Image Non-Uniformity Correction in 3T Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging: Comparison among Different Software Versions
14
作者 Hirofumi Hata Yusuke Inoue +5 位作者 Keiji Matsunaga Kaoru Fujii Toshio Tamiya Ai Nakajima Yuki Takato Kazuki Hashizume 《Open Journal of Medical Imaging》 2023年第3期114-126,共13页
Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually app... Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations. 展开更多
关键词 GD-EOB-DTPA Non-uniformity Correction 3 Tesla Software Version Image Contrast
下载PDF
Arrangement of High-standard Basic Farmland Construction Based on Village-region Cultivated Land Quality Uniformity 被引量:12
15
作者 SONG Wen WU Kening +2 位作者 ZHAO Huafu ZHAO Rui LI Ting 《Chinese Geographical Science》 SCIE CSCD 2019年第2期325-340,共16页
As an important constitute of land consolidation, high-standard basic farmland construction is an important means to protect the quantity, quality and ecological environment of cultivated land. Its target not only lie... As an important constitute of land consolidation, high-standard basic farmland construction is an important means to protect the quantity, quality and ecological environment of cultivated land. Its target not only lies in the increase of cultivated land quantity, but also the improvement of cultivated land quality, agricultural production conditions and ecosystem environments. In the present study, the quality evaluation method and construction arrangement of cultivated land were explored to facilitate the process of decision-making and implementation for high-standard basic farmland construction(HSBFC) with administrative village as the unit. Taking the land comprehensive improvement project area in Quzhou County, Handan City, Hebei Province as a case study, the whole process of the study comprised of three steps: 1) establishment of the evaluation model of cultivated land quality uniformity based on regional optimum cultivated land quality, and construction of the uniformity evaluation index system from the aspects of soil fertility quality, engineering quality, spatial quality and eco-environment quality, according to the new concept of cultivated land quality; 2) calculation of cultivated land quality uniformity by grading indicators, assigning scores and weighting sums, exploring the local homogenization characteristics of regional cultivated land quality through spatial autocorrelation analysis, and analyzing the constraints and transformative potential of barrier factors; 3) arrangement of HSBFC according to the principle of concentration, continuity and priority to the easy operation. The results revealed that the value of farmland quality uniformity for the administrative villages in the study area was between 7.76 and 21.96, and there was a difference between various administrative villages. The regional spatial autocorrelation patterns included High-High(HH), Low-Low(LL), High-Low(HL) and Low-High(LH). These indicate that regional cultivated land quality has local homogenization characteristics. The most restrictive factors in the study area were the medium and low transformation difficulty indexes, including soil organic matter content, farmland shelterbelt network density, field regularity and scale of the field. In addition, there were also high transformation difficulty indicators in some areas, such as sectional configuration. The project area was divided into four partitions: major construction area, secondary construction area, general construction area, and conditional construction area. The cultivated land area of each subarea was 1538.85 ha, 1224.27 ha, 555.93 ha, and 1666.63 ha, respectively. This comprised of 30.87%, 24.56%, 11.15% and 33.42% of the total project area, respectively. The evaluation model and index system could satisfy the evaluation of farmland quality and diagnosis of obstacle factors to facilitate the subsequent construction decision. The present study provides reference for the practice of regional HSBFC, and a new feasible idea and method for related studies. 展开更多
关键词 high-standard basic FARMLAND CULTIVATED land quality uniformity barrier factor arrangement
下载PDF
APPLICATION OF MINIMUM PROJECTION UNIFORMITY CRITERION IN COMPLEMENTARY DESIGNS 被引量:4
16
作者 宋硕 覃红 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期180-186,共7页
In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the compl... In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the complementary design means a design in which all the Hamming distances of any two runs are the same, which generalizes the concept of a pair of complementary designs in the literature. Based on relationships of the uniformity pattern between a pair of complementary designs, we propose a minimum projection uniformity (MPU) rule to assess and compare two-level factorials. 展开更多
关键词 minimum projection uniformity complementary design uniformity pattern
下载PDF
Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows 被引量:4
17
作者 ZHANG Tian WANG Li-gang +8 位作者 SHI Hui-bi YAN Hua ZHANG Long-chao LIU Xin PU Lei LIANG Jing ZHANG Yue-bo ZHAO Ke-bin WANG Li-xian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期848-854,共7页
Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of ... Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefficient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (Mo), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2 032 Large White litters. The effects of parity and classified litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from -0.03 to 0.93, and -0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was significantly influenced by parity and litter size class (P〈0.05). All the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs. 展开更多
关键词 genetic parameter litter uniformity litter size piglets mortality
下载PDF
Influence of reflow processing conditions on the uniformity of the chromium passivation film on tinplate 被引量:5
18
作者 XIE Long CHEN Hongxing XIE Yingxiu 《Baosteel Technical Research》 CAS 2014年第2期41-45,共5页
This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium pa... This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate. 展开更多
关键词 chromium passivation film TINPLATE uniformity tin oxide
下载PDF
Assessment of the SiC_p Distribution Uniformity in SiC_p/Al Composites Made by Powder Metallurgy 被引量:4
19
作者 樊建中 姚忠凯 +3 位作者 郭宏 李义春 石力开 张少明 《Rare Metals》 SCIE EI CAS CSCD 1996年第3期208-213,共6页
In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure a... In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure at the macro- and micro-mixed stages was investigated and the methods for determining mix-ture quality were put forward. 展开更多
关键词 SiC_p distribution uniformity SiC_p/Al Powder metallurgy
下载PDF
Effects of Drip System Uniformity and Irrigation Amount on Water and Salt Distributions in Soil Under Arid Conditions 被引量:4
20
作者 GUAN Hong-jie LI Jiu-sheng LI Yan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期924-939,共16页
The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices ... The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop. 展开更多
关键词 drip irrigation uniformity soil water content soil bulk electrical conductivity soil salinity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部