During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, wh...Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, which do not follow the existing criterions and codes. Many researchers began to research the special problems caused by larger height-width ratio isolation structures. The overturning effect of high height-width ratio structures with rubber bearing is firstly studied. Considering the main factors, such as the height-width ratio of structures, type of site, the designed basic acceleration of ground motion and the decouple factor in horizon, computing experiment is defined with the Uniform Design Method, which is also known as designing isolation structure. The forces of the bearing under edge of structures based on the position of the rubber bearing are calculated. The result indicates that the rubber bearings will lose its functionality under very high tension and compressing force of earthquake motion in horizon and vertical, when the height-width ratio is over a certain value. Thus, based on the calculation result of isolation structures defined in the uniform design method, regression analysis is conducted, and also the rubber edge force regression formula are gotten, which has higher correlation and smaller standard deviation. This formula can be used to roughly calculate whether the pull force occurs at the edge of the building. By the edge bearings of isolation structure minimum force formula, the height-width ratio limited value of the isolation structure is deducted when rubber bearing has minimum force of zero.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order pro...A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O (hm+1) accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O (hm+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.展开更多
Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed ...To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.展开更多
It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the mi...It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.展开更多
Landscape pattern is a widely used concept for the demonstration of landscape characteristic features. The integral spatial distribution trend of landscape elements is interested point in the landscape ecological rese...Landscape pattern is a widely used concept for the demonstration of landscape characteristic features. The integral spatial distribution trend of landscape elements is interested point in the landscape ecological research, especially in those of complex secondary forest regions with confusing mosaics of land cover. Trend surface analysis which used in community and population ecological researches was introduced to reveal the landscape pattern. A reasonable and reliable approach for application of trend surface analysis was provided in detail. As key steps of the approach, uniform grid point sampling method was developed. The efforts were also concentrated at an example of Guandishan forested landscape. Some basic rules of spatial distribution of landscape elements were exclaimed. These will be benefit to the further study in the area to enhance the forest sustainable management and landscape planning.展开更多
Manufacturing and agricultural industries use manual methods to count materials. This leads to low accuracy and inefficiency. This paper proposes a secondary counting method that combines main and differential countin...Manufacturing and agricultural industries use manual methods to count materials. This leads to low accuracy and inefficiency. This paper proposes a secondary counting method that combines main and differential counting. The area-fill identification algorithm is applied to mark the counted materials. To verify the effectiveness of the proposed counting algorithm, numbers of countings are conducted for different materials, such as the screws, hole gaskets, beans, jujube, etc. The results show that the counting accuracy reaches 98% for materials with size of 2—20 mm. The method has delivered a high-efficiency and high-accuracy automatic intelligent counting, with a wide range of application prospects and reference value.展开更多
A microwave-H202 process for sludge pretreatment exhibited high efticiencies of releasing organics, nitrogen, and phosphorus, but large quantifies of H202 residues were detected. A uniform design method was thus emplo...A microwave-H202 process for sludge pretreatment exhibited high efticiencies of releasing organics, nitrogen, and phosphorus, but large quantifies of H202 residues were detected. A uniform design method was thus employed in this study to further optimize H202 dosage by investigating effects of pH and H202 dosage on the amount of 1-I202 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H202 dosage as the independent variables, and H202 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H202 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80~C and H202 was dosed at a H202 :mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100~C by microwave irradiation. Compared to the microwave-H202 process without optimization, the H202 dosage and the utilization rate of H202 in the optimized microwave-H202 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H202:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H202 process without optimization at H202:MLSS ratio of 0.5.展开更多
The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing f...The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing future hazards to improve seismic safety.Seismic fragility analysis can assist the resilience assessment under different levels of seismic intensity.However,such an analysis is computationally intensive,especially when considering various random factors.The present paper implemented the deep learning neural networks that are integrated into the performance-based earthquake engineering framework to predict fragility functions and associated resilience index of cable-stayed bridges under seismic hazards to improve the computational efficiency while having sufficient accuracy.In the proposed framework,the Latin hypercube sampling was improved with additional uniformity to enhance the training process of the neural network.The well-trained neural network was then applied in a probabilistic simulation process to derive different component fragilities of the cable-stayed bridge.The estimated fragility functions were combined with the Monte Carlo simulations to predict system resilience.The proposed integrated framework in this study was demonstrated on an existing single-pylon cable-stayed bridge in China.Results reveal that this integrated framework yields accurate predictions of fragility functions for the cable-stayed bridge and has reasonable accuracy compared with the conventional methods.展开更多
OBJECTIVE: To investigate the optimal dosage ratio of chlorogenic acid and gardenia glycosides in treating the rates with fatty liver disease induced by high-fat feed.METHODS: A rat model of non-alcoholic fatty liver ...OBJECTIVE: To investigate the optimal dosage ratio of chlorogenic acid and gardenia glycosides in treating the rates with fatty liver disease induced by high-fat feed.METHODS: A rat model of non-alcoholic fatty liver disease(NAFLD) was established by using a high-fat diet. According to mathematical model "uniform design", varying doses of chlorogenic acid and gardenia glycosides have been combined to form 6 medications for the treatment of NAFLD.Samples were then taken to observe pathological changes of the liver tissue(HE staining); changes in the fat metabolism pathway e.g. triglyceride(TG)and free fatty acid(FFA) content; alterations in liver function, i.e. serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST) activity; and differences in Malondialdehyde(MDA) and superoxide dismutase(SOD) content in the liver tissue. Multiple regression analysis was conducted to test the optimal dosage ratio of chlorogenic acid and gardenia glycosides.RESULTS: Fatty degeneration and vacuole-like changes of different degrees occurred in hepatic cells of the model group. Markers for fat metabolism, serum ALT and AST activities, and expression of MDA in liver tissue significantly increased, while SOD decreased. Combination of 90 mg chlorogenic acid and 90 mg Gardenia glycosides was the optimal dosage ratio of chlorogenic acid and gardenia glycosides in the treatment of rats with fatty liver induced by high-fat diet.CONCLUSION: Chlorogenic acid of 90 mg plus gardenia glycosides of 90 mg was the best combination in the treatment of fatty liver disease in rats induced by high-fat feed.展开更多
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.
文摘Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, which do not follow the existing criterions and codes. Many researchers began to research the special problems caused by larger height-width ratio isolation structures. The overturning effect of high height-width ratio structures with rubber bearing is firstly studied. Considering the main factors, such as the height-width ratio of structures, type of site, the designed basic acceleration of ground motion and the decouple factor in horizon, computing experiment is defined with the Uniform Design Method, which is also known as designing isolation structure. The forces of the bearing under edge of structures based on the position of the rubber bearing are calculated. The result indicates that the rubber bearings will lose its functionality under very high tension and compressing force of earthquake motion in horizon and vertical, when the height-width ratio is over a certain value. Thus, based on the calculation result of isolation structures defined in the uniform design method, regression analysis is conducted, and also the rubber edge force regression formula are gotten, which has higher correlation and smaller standard deviation. This formula can be used to roughly calculate whether the pull force occurs at the edge of the building. By the edge bearings of isolation structure minimum force formula, the height-width ratio limited value of the isolation structure is deducted when rubber bearing has minimum force of zero.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
文摘A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O (hm+1) accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O (hm+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
基金Foundation item: Project(40372124) supported by the National Natural Science of China project(05R214145) supported by Postdoctor Research Foundation of Chinaproject(B308) supported by Shanghai Leading Academic Discipline
文摘To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.
基金Projects(51474251,51874351)supported by the National Natural Science Foundation,China。
文摘It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.
文摘Landscape pattern is a widely used concept for the demonstration of landscape characteristic features. The integral spatial distribution trend of landscape elements is interested point in the landscape ecological research, especially in those of complex secondary forest regions with confusing mosaics of land cover. Trend surface analysis which used in community and population ecological researches was introduced to reveal the landscape pattern. A reasonable and reliable approach for application of trend surface analysis was provided in detail. As key steps of the approach, uniform grid point sampling method was developed. The efforts were also concentrated at an example of Guandishan forested landscape. Some basic rules of spatial distribution of landscape elements were exclaimed. These will be benefit to the further study in the area to enhance the forest sustainable management and landscape planning.
基金supported by the Special Fund of Science and Technology Innovation Strategy of Guangdong Province in 2021 (No.pdjh2021a0284)the National Natural Science Foundation of China (No.52105436)+1 种基金the Guangzhou Science and Technology Plan (No.202102080184)the Guangdong Education Department Project (No.2019KTSCX086)。
文摘Manufacturing and agricultural industries use manual methods to count materials. This leads to low accuracy and inefficiency. This paper proposes a secondary counting method that combines main and differential counting. The area-fill identification algorithm is applied to mark the counted materials. To verify the effectiveness of the proposed counting algorithm, numbers of countings are conducted for different materials, such as the screws, hole gaskets, beans, jujube, etc. The results show that the counting accuracy reaches 98% for materials with size of 2—20 mm. The method has delivered a high-efficiency and high-accuracy automatic intelligent counting, with a wide range of application prospects and reference value.
基金supported by the National Natural Science Foundation of China (No. 51008297)the Hi-Tech Research and Development Program (863) of China(No. 2007AA06Z347)the National Major Science & Technology Projects for Water Pollution Control and Management (No. 2012ZX07202-005)
文摘A microwave-H202 process for sludge pretreatment exhibited high efticiencies of releasing organics, nitrogen, and phosphorus, but large quantifies of H202 residues were detected. A uniform design method was thus employed in this study to further optimize H202 dosage by investigating effects of pH and H202 dosage on the amount of 1-I202 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H202 dosage as the independent variables, and H202 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H202 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80~C and H202 was dosed at a H202 :mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100~C by microwave irradiation. Compared to the microwave-H202 process without optimization, the H202 dosage and the utilization rate of H202 in the optimized microwave-H202 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H202:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H202 process without optimization at H202:MLSS ratio of 0.5.
基金supported by the National Natural Science Foundation of China (Grant No.51708527)the R&D Project of China Railway Siyuan Survey and Design Institute Group Co.,Ltd. (Grant No.2020k172)。
文摘The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing future hazards to improve seismic safety.Seismic fragility analysis can assist the resilience assessment under different levels of seismic intensity.However,such an analysis is computationally intensive,especially when considering various random factors.The present paper implemented the deep learning neural networks that are integrated into the performance-based earthquake engineering framework to predict fragility functions and associated resilience index of cable-stayed bridges under seismic hazards to improve the computational efficiency while having sufficient accuracy.In the proposed framework,the Latin hypercube sampling was improved with additional uniformity to enhance the training process of the neural network.The well-trained neural network was then applied in a probabilistic simulation process to derive different component fragilities of the cable-stayed bridge.The estimated fragility functions were combined with the Monte Carlo simulations to predict system resilience.The proposed integrated framework in this study was demonstrated on an existing single-pylon cable-stayed bridge in China.Results reveal that this integrated framework yields accurate predictions of fragility functions for the cable-stayed bridge and has reasonable accuracy compared with the conventional methods.
基金Supported by the General Project of National Natural Science Foundation of China,Research of the Ratio Optimization between Chlorogenic Acid and Geniposide for Non-alcoholic Fatty Liver Disease,the Mechanism of Action for Epithelial-Mesenchymal Transition(No.81274155),Mechanism of Chlorogenic Acid and Geniposide for NASH by Regulating Kupffer Cells Polarization Based on Gut-liver Axis(No.81673660),the Youth Project of National Natural Science Foundation of China,Research on the mechanism of compound prescription of Chinese traditional medicine regulating endocannabinoid system in non-alcoholic steatohepatitis(No.81503529),Mechanism of treatment of nonalcoholic fatty liver disease by"HJJB"compound of Chinese traditional medicine based on insulin transduction(No.81503404)the Pilot Project of Science and Technology of Fujian Province,Study of Compound Prescription of Chinese Traditional Medicine on Fibrosis Based on Endocannabinoid System(No.2016D012)+1 种基金the TCM Project of Fujian Health Department,Clinic Research of Chinese Traditional Medicine for Nonalcoholic Fatty Liver(No.wzpw201308)the General Project of Xiamen Science and Technology Program Grant,Research of Chinese Traditional Medicine with IFNαTreatment on CHB(No.3502Z20134020)
文摘OBJECTIVE: To investigate the optimal dosage ratio of chlorogenic acid and gardenia glycosides in treating the rates with fatty liver disease induced by high-fat feed.METHODS: A rat model of non-alcoholic fatty liver disease(NAFLD) was established by using a high-fat diet. According to mathematical model "uniform design", varying doses of chlorogenic acid and gardenia glycosides have been combined to form 6 medications for the treatment of NAFLD.Samples were then taken to observe pathological changes of the liver tissue(HE staining); changes in the fat metabolism pathway e.g. triglyceride(TG)and free fatty acid(FFA) content; alterations in liver function, i.e. serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST) activity; and differences in Malondialdehyde(MDA) and superoxide dismutase(SOD) content in the liver tissue. Multiple regression analysis was conducted to test the optimal dosage ratio of chlorogenic acid and gardenia glycosides.RESULTS: Fatty degeneration and vacuole-like changes of different degrees occurred in hepatic cells of the model group. Markers for fat metabolism, serum ALT and AST activities, and expression of MDA in liver tissue significantly increased, while SOD decreased. Combination of 90 mg chlorogenic acid and 90 mg Gardenia glycosides was the optimal dosage ratio of chlorogenic acid and gardenia glycosides in the treatment of rats with fatty liver induced by high-fat diet.CONCLUSION: Chlorogenic acid of 90 mg plus gardenia glycosides of 90 mg was the best combination in the treatment of fatty liver disease in rats induced by high-fat feed.