We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity resul...We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.展开更多
The paper is devoted to the homogenization of elliptic systems in divergence form.We obtain uniform interior as well as boundary Lipschitz estimates in a bounded C1,γdomain when the coefficients are Dini continuous,i...The paper is devoted to the homogenization of elliptic systems in divergence form.We obtain uniform interior as well as boundary Lipschitz estimates in a bounded C1,γdomain when the coefficients are Dini continuous,inhomogeneous terms are divergence of Dini continuous functions and the boundary functions have Dini continuous derivatives.The results extend Avellaneda and Lin’s work[Comm.Pure Appl.Math.,40:803-847(1987)],where Holder continuity is the main assumption on smoothness of the data.展开更多
文摘We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.
基金Supported in part by the National Natural Science Foundation of China(No.12071365 and 12001419)。
文摘The paper is devoted to the homogenization of elliptic systems in divergence form.We obtain uniform interior as well as boundary Lipschitz estimates in a bounded C1,γdomain when the coefficients are Dini continuous,inhomogeneous terms are divergence of Dini continuous functions and the boundary functions have Dini continuous derivatives.The results extend Avellaneda and Lin’s work[Comm.Pure Appl.Math.,40:803-847(1987)],where Holder continuity is the main assumption on smoothness of the data.