A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obta...A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.展开更多
A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions,and...A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions,and sufficient conditions are obtained for the local asymptotic stability of a positive equilibrium of the system.展开更多
A delayed biological system of predator-prey interaction with stage structure and density dependent juvenile birth rate is investigated. It is assumed that the prey population has two stages: immature and mature. The ...A delayed biological system of predator-prey interaction with stage structure and density dependent juvenile birth rate is investigated. It is assumed that the prey population has two stages: immature and mature. The growth of the immature prey is density dependent and is a function of the density of adult prey. Such phenomenon has been reported for beetles, tribolium, copepods, scorpions, several fish species and even crows. The growth of the predator is affected by the time delay due to gestation. By some Lemmas and methods of delay differential equation, the conditions for the uniform persistence and extinction of the system are obtained. Numerical simulations illustrate the feasibility of the main results and demonstrate that the density dependent coefficient has influence on the system populations’ densities though it has no effect on uniform persistence and extinction of the system.展开更多
Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and glob...Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.展开更多
In this paper, authors study the qualitative behavior of solutions of the discrete population model xn-xn-1=xn (a+bxn-k-cx2n-k),where a ∈ (0, 1), b ∈ (-∞, 0),c ∈ (0,∞ ), and k is a positive integer. They hot only...In this paper, authors study the qualitative behavior of solutions of the discrete population model xn-xn-1=xn (a+bxn-k-cx2n-k),where a ∈ (0, 1), b ∈ (-∞, 0),c ∈ (0,∞ ), and k is a positive integer. They hot only obtain necessary as well as sufficient and necessary conditions for the oscillation of ail eventually positive solutions about the positive equilibrium, but also obtain some sufficient conditions for the convergence of eventually positive solutions. Furthermore, authors also show that such model is uniformly persistent, and that all its eventually positive solutions are bounded.展开更多
In this paper, we considered the predator-prey system with stage-structure for prey, where the predators predate immature preys only. The positivity and boundedness of the solutions and asymptotic stability of equilib...In this paper, we considered the predator-prey system with stage-structure for prey, where the predators predate immature preys only. The positivity and boundedness of the solutions and asymptotic stability of equilibrium were firstly discussed, and then uniformly persistent sufficient conditions of populations were found.展开更多
This paper is concerned with interactional models for adults of two species delayed by their mature periods. The existence and local stability of equilibria are discussed thoroughly for competitive systems, cooperativ...This paper is concerned with interactional models for adults of two species delayed by their mature periods. The existence and local stability of equilibria are discussed thoroughly for competitive systems, cooperative systems and predator-prey systems, respectively. For systems with interaction of competition and cooperation, it is found that the two populations are uniformly persistent if the positive equilibrium is stable. For predator-prey interaction, however, some further conditions are needed to guarantee the persistence of the systems.展开更多
In this paper,by applying Comparison Theorem of differential equation,Continuation Theorem of coincidence degree theory,Barbalat Lemma and Lyapunov Function,a diffusion system with distributive time delay and ratio-de...In this paper,by applying Comparison Theorem of differential equation,Continuation Theorem of coincidence degree theory,Barbalat Lemma and Lyapunov Function,a diffusion system with distributive time delay and ratio-dependence functional response is studied.It is proved that the system is uniformly persistent under appropriate conditions.Further,if the system is a periodic one,it can have a strictly positive periodic solution which is globally asymptotically stable under appropriations.Some new results are obtained.展开更多
Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for fi...Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals,which means that the epidemic is uniformly persistent if the control reproduction number R_(c)>1.This approach can be applied to the related biomat hem at ical models,and some existing works can be improved by using that.In addition,the infection-free equilibrium V^(0)of the model is locally asymptotically stable(LAS)if R_(c)<1 and linearly stable if R_(c)=1;while V^(0)is unstable if R_(c)>1.展开更多
We study the qualitative property of solutions of planar periodic competing otka-Volterra systems New criteria of uniform persistence of solutins and existence, uniqueness and globally asymptotical stability of positi...We study the qualitative property of solutions of planar periodic competing otka-Volterra systems New criteria of uniform persistence of solutins and existence, uniqueness and globally asymptotical stability of positive periodic solution are established. The results results in [1 -6] are summarized and improved in this paper.展开更多
In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse betw...In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse between the two patches, but the other is confined to one patch and cannot disperse. Our purpose is to demonstrate that the dispersion rates have no effect on the uniform persistence of the solutions of the system. Furthermore, we establish the conditions under which the system admits a positive periodic solution which attracts all solutions.展开更多
The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By m...The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.展开更多
In this paper, a nonautonomous predator-prey dispersion model is studied, where all parameters are time-dependent. The system, which is consisted of n-patches, the prey specics can disperse among n-patches, but the pr...In this paper, a nonautonomous predator-prey dispersion model is studied, where all parameters are time-dependent. The system, which is consisted of n-patches, the prey specics can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. It is proved the system is uniformly persistent under any dispersion rates effect. Furthermore, sufficient conditions are established for global stability of the system.展开更多
This paper devotes to study the N species competition system with time delays in a periodic environment. some verifiable sufficient conditions which are easy to be verified for dissipation, the existence of period...This paper devotes to study the N species competition system with time delays in a periodic environment. some verifiable sufficient conditions which are easy to be verified for dissipation, the existence of periodic solution and global asymptotic stability of periodic solution are obtained.展开更多
To investigate the impact of the fixed latent periods in the human and vector populations on the disease transmission in heterogenous environment,we formulate a nonlocal and time-delayed reaction-diffusion(NLTD-RD)sys...To investigate the impact of the fixed latent periods in the human and vector populations on the disease transmission in heterogenous environment,we formulate a nonlocal and time-delayed reaction-diffusion(NLTD-RD)system.By appealing to the next generation operator(NGO),we define the basic reproduction number(BRN)Ro,and prove it as a threshold parameter for indicating whether disease persists or not.Specifically,if o<1,the disease-free equilibrium is globally asymptotically stable,while if Ro>1,the disease is shown to be uniformly persistent.In the homogeneous case that all parameters are assumed to be constants,the explicit expression of o is obtained.We further achieved the global attractivity of the constant equilibria by utilizing Lyapunov functionals.Numerical simulations are performed to verify the theoretical results and the effects of the diffusion rate on disease transmission.展开更多
This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established...This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established by combining the theory of monotone semiflows generated by RFDEs with infinite delay and the fixed point theorems of solution operators. A nontrivial application of the results obtained here to a well-known nonautonomous Lotka-Volterra system with infinite delay is also presented.展开更多
Abstract A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate condi...Abstract A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are derived for the global attractivity of the positive equilibrium of the system.展开更多
In this paper, mathematical analysis of the global dynamics of a viral infection model in vivo is carried out. Though the model is originally to study hepatitis C virus (HCV) dynamics in patients with high baseline ...In this paper, mathematical analysis of the global dynamics of a viral infection model in vivo is carried out. Though the model is originally to study hepatitis C virus (HCV) dynamics in patients with high baseline viral loads or advanced liver disease, similar models still hold significance for other viral infection, such as hepatitis B virus (HBV) or human immunodeficiency virus (HIV) infection. By means of Volterra-type Lyapunov functions, we know that the basic reproduction number R0 is a sharp threshold para- meter for the outcomes of viral infections. If R0 ~ 1, the virus-free equilibrium is globally asymptotically stable. If R0 ~ 1, the system is uniformly persistent, the unique endemic equilibrium appears and is globally asymptotically stable under a sufficient condition. Other than that, for the global stability of the unique endemic equilibrium, another suffi- cient condition is obtained by Li-Muldowney global-stability criterion. Using numerical simulation techniques, we further find that sustained oscillations can exist and different maximum de novo hepatocyte influx rate can induce different global dynamics along with the change of overall drug effectiveness. Finally, some biological implications of our findings are given.展开更多
We consider a model of the exploitative competition of two micro-organisms for two complementary nutrients in a chemostat and take into account the interspecific interac- tion. The growth functions occurring in the mo...We consider a model of the exploitative competition of two micro-organisms for two complementary nutrients in a chemostat and take into account the interspecific interac- tion. The growth functions occurring in the model are of general type and the interaction functions are monotonic and positive. By the mean of the Thieme-Zhao theorem, we establish conditions for uniform persistence of the model.展开更多
文摘A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.
文摘A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions,and sufficient conditions are obtained for the local asymptotic stability of a positive equilibrium of the system.
文摘A delayed biological system of predator-prey interaction with stage structure and density dependent juvenile birth rate is investigated. It is assumed that the prey population has two stages: immature and mature. The growth of the immature prey is density dependent and is a function of the density of adult prey. Such phenomenon has been reported for beetles, tribolium, copepods, scorpions, several fish species and even crows. The growth of the predator is affected by the time delay due to gestation. By some Lemmas and methods of delay differential equation, the conditions for the uniform persistence and extinction of the system are obtained. Numerical simulations illustrate the feasibility of the main results and demonstrate that the density dependent coefficient has influence on the system populations’ densities though it has no effect on uniform persistence and extinction of the system.
基金Supported by the NNSF of China(10671021)the SRF of Hunan Provincial Education Department(09C388)
文摘Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.
文摘In this paper, authors study the qualitative behavior of solutions of the discrete population model xn-xn-1=xn (a+bxn-k-cx2n-k),where a ∈ (0, 1), b ∈ (-∞, 0),c ∈ (0,∞ ), and k is a positive integer. They hot only obtain necessary as well as sufficient and necessary conditions for the oscillation of ail eventually positive solutions about the positive equilibrium, but also obtain some sufficient conditions for the convergence of eventually positive solutions. Furthermore, authors also show that such model is uniformly persistent, and that all its eventually positive solutions are bounded.
文摘In this paper, we considered the predator-prey system with stage-structure for prey, where the predators predate immature preys only. The positivity and boundedness of the solutions and asymptotic stability of equilibrium were firstly discussed, and then uniformly persistent sufficient conditions of populations were found.
基金National Natural science Foundation of China(10771048,10671209).
文摘This paper is concerned with interactional models for adults of two species delayed by their mature periods. The existence and local stability of equilibria are discussed thoroughly for competitive systems, cooperative systems and predator-prey systems, respectively. For systems with interaction of competition and cooperation, it is found that the two populations are uniformly persistent if the positive equilibrium is stable. For predator-prey interaction, however, some further conditions are needed to guarantee the persistence of the systems.
文摘In this paper,by applying Comparison Theorem of differential equation,Continuation Theorem of coincidence degree theory,Barbalat Lemma and Lyapunov Function,a diffusion system with distributive time delay and ratio-dependence functional response is studied.It is proved that the system is uniformly persistent under appropriate conditions.Further,if the system is a periodic one,it can have a strictly positive periodic solution which is globally asymptotically stable under appropriations.Some new results are obtained.
基金partially supported by the National Natural Science Foundation of China(Nos.11901027,11971273and 12126426)the Major Program of the National Natural Science Foundation of China(No.12090014)+4 种基金the State Key Program of the National Natural Science Foundation of China(No.12031020)the Natural Science Foundation of Shandong Province(No.ZR2018MA004)the China Postdoctoral Science Foundation(No.2021M703426)the Pyramid Talent Training Project of BUCEA(No.JDYC20200327)the BUCEA Post Graduate Innovation Project(No.PG2022143)。
文摘Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals,which means that the epidemic is uniformly persistent if the control reproduction number R_(c)>1.This approach can be applied to the related biomat hem at ical models,and some existing works can be improved by using that.In addition,the infection-free equilibrium V^(0)of the model is locally asymptotically stable(LAS)if R_(c)<1 and linearly stable if R_(c)=1;while V^(0)is unstable if R_(c)>1.
文摘We study the qualitative property of solutions of planar periodic competing otka-Volterra systems New criteria of uniform persistence of solutins and existence, uniqueness and globally asymptotical stability of positive periodic solution are established. The results results in [1 -6] are summarized and improved in this paper.
基金This research is supported by the National Natural Science Foundation of China the Natural Science Foundation of Henan Province.
文摘In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse between the two patches, but the other is confined to one patch and cannot disperse. Our purpose is to demonstrate that the dispersion rates have no effect on the uniform persistence of the solutions of the system. Furthermore, we establish the conditions under which the system admits a positive periodic solution which attracts all solutions.
基金The research is supported by the Scientific Research Foundation of the Doctor Department of Hubei University of Technology.
文摘The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.
基金Supported by the Natural Science Foundatioll of Henan province (994051600)
文摘In this paper, a nonautonomous predator-prey dispersion model is studied, where all parameters are time-dependent. The system, which is consisted of n-patches, the prey specics can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. It is proved the system is uniformly persistent under any dispersion rates effect. Furthermore, sufficient conditions are established for global stability of the system.
文摘This paper devotes to study the N species competition system with time delays in a periodic environment. some verifiable sufficient conditions which are easy to be verified for dissipation, the existence of periodic solution and global asymptotic stability of periodic solution are obtained.
基金supported by National Natural Science Foundation of China(Nos.12071115 and 11871179)Fundamental Research Funds for the Universities in Heilongjiang Province(No.2021-KYYWF-0017)Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems.
文摘To investigate the impact of the fixed latent periods in the human and vector populations on the disease transmission in heterogenous environment,we formulate a nonlocal and time-delayed reaction-diffusion(NLTD-RD)system.By appealing to the next generation operator(NGO),we define the basic reproduction number(BRN)Ro,and prove it as a threshold parameter for indicating whether disease persists or not.Specifically,if o<1,the disease-free equilibrium is globally asymptotically stable,while if Ro>1,the disease is shown to be uniformly persistent.In the homogeneous case that all parameters are assumed to be constants,the explicit expression of o is obtained.We further achieved the global attractivity of the constant equilibria by utilizing Lyapunov functionals.Numerical simulations are performed to verify the theoretical results and the effects of the diffusion rate on disease transmission.
基金Project supported by NNSF of China (No:19971026).
文摘This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established by combining the theory of monotone semiflows generated by RFDEs with infinite delay and the fixed point theorems of solution operators. A nontrivial application of the results obtained here to a well-known nonautonomous Lotka-Volterra system with infinite delay is also presented.
文摘Abstract A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are derived for the global attractivity of the positive equilibrium of the system.
文摘In this paper, mathematical analysis of the global dynamics of a viral infection model in vivo is carried out. Though the model is originally to study hepatitis C virus (HCV) dynamics in patients with high baseline viral loads or advanced liver disease, similar models still hold significance for other viral infection, such as hepatitis B virus (HBV) or human immunodeficiency virus (HIV) infection. By means of Volterra-type Lyapunov functions, we know that the basic reproduction number R0 is a sharp threshold para- meter for the outcomes of viral infections. If R0 ~ 1, the virus-free equilibrium is globally asymptotically stable. If R0 ~ 1, the system is uniformly persistent, the unique endemic equilibrium appears and is globally asymptotically stable under a sufficient condition. Other than that, for the global stability of the unique endemic equilibrium, another suffi- cient condition is obtained by Li-Muldowney global-stability criterion. Using numerical simulation techniques, we further find that sustained oscillations can exist and different maximum de novo hepatocyte influx rate can induce different global dynamics along with the change of overall drug effectiveness. Finally, some biological implications of our findings are given.
文摘We consider a model of the exploitative competition of two micro-organisms for two complementary nutrients in a chemostat and take into account the interspecific interac- tion. The growth functions occurring in the model are of general type and the interaction functions are monotonic and positive. By the mean of the Thieme-Zhao theorem, we establish conditions for uniform persistence of the model.