This paper utilizes uniquely decodable codes[UDCs]in an M-to-1 free-space optical[FSO]system.Benefiting from UDCs’nonorthogonal nature,the sum throughput is improved.We first prove that the uniquely decodable propert...This paper utilizes uniquely decodable codes[UDCs]in an M-to-1 free-space optical[FSO]system.Benefiting from UDCs’nonorthogonal nature,the sum throughput is improved.We first prove that the uniquely decodable property still holds,even in optical fading channels.It is further discovered that the receiver can extract each source’s data from superimposed symbols with only one processing unit.According to theoretical analysis and simulation results,the throughput gain is up to the normalized UDC’s sum rate in high signal-to-noise ratio cases.An equivalent desktop experiment is also implemented to show the feasibility of the UDC-FSO structure.展开更多
基金supported in part by the National Natural Science Foundation of China(No.62101527)in part by the Funding Program of Innovation Labs by CIOMP。
文摘This paper utilizes uniquely decodable codes[UDCs]in an M-to-1 free-space optical[FSO]system.Benefiting from UDCs’nonorthogonal nature,the sum throughput is improved.We first prove that the uniquely decodable property still holds,even in optical fading channels.It is further discovered that the receiver can extract each source’s data from superimposed symbols with only one processing unit.According to theoretical analysis and simulation results,the throughput gain is up to the normalized UDC’s sum rate in high signal-to-noise ratio cases.An equivalent desktop experiment is also implemented to show the feasibility of the UDC-FSO structure.