期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Metal-Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction:Tailoring the Activity through Exposed Crystal Facets 被引量:3
1
作者 Yanzhi Wang Tu Sun +9 位作者 Amir H.B.Mostaghimi Tiago J.Goncalves Zuozhong Liang Yuye Zhou Wei Zhang Zhehao Huang Yanhang Ma Rui Cao Samira Siahrostami Haoquan Zheng 《CCS Chemistry》 CAS 2022年第5期1633-1642,共10页
As one of the most important families of porous materials,metal–organic frameworks(MOFs)have well-defined atomic structures.This provides ideal models for investigating and understanding the relationships between str... As one of the most important families of porous materials,metal–organic frameworks(MOFs)have well-defined atomic structures.This provides ideal models for investigating and understanding the relationships between structures and catalytic activities at the molecular level.However,the active sites on the edges of two-dimensional(2D)MOFs have rarely been studied,as they are less exposed to the surfaces.Here,for the first time,we synthesized and observed that the 2D layers could align perpendicular to the surface of a 2D zeolitic imidazolate framework L(ZIF-L)with a leaf-like morphology.Owing to this unique orientation,the active sites on the edges of the 2D crystal structure could mostly be exposed to the surfaces.Interestingly,when another layer of ZIF-L-Co was grown heteroepitaxially onto ZIF-L-Zn(ZIF-L-Zn@ZIF-L-Co),the two layers shared a common b axis but rotated by 90°in the ac plane.This demonstrated that we could control exposed facets of the 2D MOFs.The ZIF-L-Co with more exposed edge active sites exhibited high electrocatalytic activity for oxygen reduction reaction.This work provides a new concept of designing unique oriented layers in 2D MOFs to expose more edge-active sites for efficient electrocatalysis. 展开更多
关键词 unique oriented layer two-dimensional material metal-organic framework ELECTROCATALYST oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部