This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yar...This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement.展开更多
Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is ...Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites.展开更多
基金BASTRI Subtopic Research about Digital Sampler Technology of Body Structure Performance Study Based on Big Data Calculation Model,China(No.MIIT Civil aircraft special purpose MJ-2017-F-20)
文摘This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement.
文摘Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites.
基金is supported by National Natural Science Foundation of China (50005016, 50375124), and China Aviation Foundation (00B53010, 03B53003), National Natural Science Foundation of Shaanxi Province as well as the Yangtze River Foundation.