We demonstrate real-time three-dimensional(3D)color video using a color electroholographic system with a cluster of multiple-graphics processing units(multi-GPU)and three spatial light modulators(SLMs)corresponding re...We demonstrate real-time three-dimensional(3D)color video using a color electroholographic system with a cluster of multiple-graphics processing units(multi-GPU)and three spatial light modulators(SLMs)corresponding respectively to red,green,and blue(RGB)-colored reconstructing lights.The multi-GPU cluster has a computer-generated hologram(CGH)display node containing a GPU,for displaying calculated CGHs on SLMs,and four CGH calculation nodes using 12 GPUs.The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing.Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.展开更多
Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional(3 D) holographic video from a point-cloud model compris...Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional(3 D) holographic video from a point-cloud model comprising a huge number of object points. To solve these problems, we implement herein a spatiotemporal division multiplexing method on a cluster system with 13 GPUs connected by a gigabit Ethernet network.A performance evaluation indicates that the proposed method can realize a real-time holographic video of a3 D object comprising ~1,200,000 object points. These results demonstrate a clear 3 D holographic video at32.7 frames per second reconstructed from a 3 D object comprising 1,064,462 object points.展开更多
We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing ligh...We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.展开更多
This paper presents an effective clustering mode and a novel clustering result evaluating mode. Clustering mode has two limited integral parameters. Evaluating mode evaluates clustering results and gives each a mark. ...This paper presents an effective clustering mode and a novel clustering result evaluating mode. Clustering mode has two limited integral parameters. Evaluating mode evaluates clustering results and gives each a mark. The higher mark the clustering result gains, the higher quality it has. By organizing two modes in different ways, we can build two clustering algorithms: SECDU(Self-Expanded Clustering Algorithm based on Density Units) and SECDUF(Self-Expanded Clustering Algorithm Based on Density Units with Evaluation Feedback Section). SECDU enumerates all value pairs of two parameters of clustering mode to process data set repeatedly and evaluates every clustering result by evaluating mode. Then SECDU output the clustering result that has the highest evaluating mark among all the ones. By applying "hill-climbing algorithm", SECDUF improves clustering efficiency greatly. Data sets that have different distribution features can be well adapted to both algorithms. SECDU and SECDUF can output high-quality clustering results. SECDUF tunes parameters of clustering mode automatically and no man's action involves through the whole process. In addition, SECDUF has a high clustering performance.展开更多
This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization pro...This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization problem, encountered as one of the toughest problems in power systems, in which some power generating units are to be scheduled in such a way that the forecasted demand is met at minimum production cost over a time horizon. In the proposed algorithm, the algorithm integrates the main features of a binary-real coded genetic algorithm (GA) and k-means clustering technique. The binary coded GA is used to obtain a feasible commitment schedule for each generating unit;while the power amounts generated by committed units are determined by using real coded GA for the feasible commitment obtained in each interval. k-means clustering algorithm divides population into a specific number of subpopulations with dynamic size. In this way, using k-means clustering algorithm allows the use of different GA operators with the whole population and avoids the local problem minima. The effectiveness of the proposed technique is validated on a test power system available in the literature. The proposed algorithm performance is found quite satisfactory in comparison with the previously reported results.展开更多
This paper presents a versatile method for synthesizing electron-rich polynuclear transition metal clusters with chalcogen bridges and phosphine ligands.The reactions of transition metal complexes(R3P)2MX2(M=Co,Ni;R=P...This paper presents a versatile method for synthesizing electron-rich polynuclear transition metal clusters with chalcogen bridges and phosphine ligands.The reactions of transition metal complexes(R3P)2MX2(M=Co,Ni;R=Ph,Bu,Et;X=Cl,Br) with bridging reagents Na2Ex (E=S,Se;x=1.2) are described.The geometric and electronic structures of a series of polynuclear transition metal clusters with trianglar M3 units are also discussed.展开更多
In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated qui...In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated quickly and defined exactly. In our study, global information will be introduced into the backup protection system. By analyzing and computing real-time PMU measurements, basing on cluster analysis theory, we are using mainly hierarchical cluster analysis to search after the statistical laws of electrical quantities' marked changes. Then we carry out fast and exact detection of fault components and fault sections, and finally accomplish fault isolation. The facts show that the fault detection of fault component (fault section) can be performed successfully by hierarchical cluster analysis and calculation. The results of hierarchical cluster analysis are accurate and reliable, and the dendrograms of hierarchical cluster analysis are in intuition.展开更多
随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定...随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。展开更多
为研究行政单位预算内部控制并提供相应的优化建议,基于K-means聚类算法对数据进行聚类分析。利用德尔菲法设计评价因子,采用SPSS(Statistical Product and Service Solutions)软件在K-means聚类算法的基础上建立行政单位预算内部控制...为研究行政单位预算内部控制并提供相应的优化建议,基于K-means聚类算法对数据进行聚类分析。利用德尔菲法设计评价因子,采用SPSS(Statistical Product and Service Solutions)软件在K-means聚类算法的基础上建立行政单位预算内部控制评价模型,分析行政单位内部人员对内部环境满意度、审批人员工作能力、审批效率以及审批质量的看法,找出行政单位预算内部控制存在的问题。结果表明,行政单位预算审批效率与审批质量亟待提高,在预算审批过程中需要注意大额支出审批。实验调查了行政单位预算内部控制目前仍存在的问题,并且提出改进建议。展开更多
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Nos.18K11399 and 19H01097)the Telecommunications Advancement Foundation.
文摘We demonstrate real-time three-dimensional(3D)color video using a color electroholographic system with a cluster of multiple-graphics processing units(multi-GPU)and three spatial light modulators(SLMs)corresponding respectively to red,green,and blue(RGB)-colored reconstructing lights.The multi-GPU cluster has a computer-generated hologram(CGH)display node containing a GPU,for displaying calculated CGHs on SLMs,and four CGH calculation nodes using 12 GPUs.The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing.Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Nos.18K11399 and 19H01097)the Telecommunications Advancement Foundation
文摘Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional(3 D) holographic video from a point-cloud model comprising a huge number of object points. To solve these problems, we implement herein a spatiotemporal division multiplexing method on a cluster system with 13 GPUs connected by a gigabit Ethernet network.A performance evaluation indicates that the proposed method can realize a real-time holographic video of a3 D object comprising ~1,200,000 object points. These results demonstrate a clear 3 D holographic video at32.7 frames per second reconstructed from a 3 D object comprising 1,064,462 object points.
基金partially supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(C)under Grant No.15K00153
文摘We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.
基金Supported by the National Natural Science Foundation of China(60573089)
文摘This paper presents an effective clustering mode and a novel clustering result evaluating mode. Clustering mode has two limited integral parameters. Evaluating mode evaluates clustering results and gives each a mark. The higher mark the clustering result gains, the higher quality it has. By organizing two modes in different ways, we can build two clustering algorithms: SECDU(Self-Expanded Clustering Algorithm based on Density Units) and SECDUF(Self-Expanded Clustering Algorithm Based on Density Units with Evaluation Feedback Section). SECDU enumerates all value pairs of two parameters of clustering mode to process data set repeatedly and evaluates every clustering result by evaluating mode. Then SECDU output the clustering result that has the highest evaluating mark among all the ones. By applying "hill-climbing algorithm", SECDUF improves clustering efficiency greatly. Data sets that have different distribution features can be well adapted to both algorithms. SECDU and SECDUF can output high-quality clustering results. SECDUF tunes parameters of clustering mode automatically and no man's action involves through the whole process. In addition, SECDUF has a high clustering performance.
文摘This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization problem, encountered as one of the toughest problems in power systems, in which some power generating units are to be scheduled in such a way that the forecasted demand is met at minimum production cost over a time horizon. In the proposed algorithm, the algorithm integrates the main features of a binary-real coded genetic algorithm (GA) and k-means clustering technique. The binary coded GA is used to obtain a feasible commitment schedule for each generating unit;while the power amounts generated by committed units are determined by using real coded GA for the feasible commitment obtained in each interval. k-means clustering algorithm divides population into a specific number of subpopulations with dynamic size. In this way, using k-means clustering algorithm allows the use of different GA operators with the whole population and avoids the local problem minima. The effectiveness of the proposed technique is validated on a test power system available in the literature. The proposed algorithm performance is found quite satisfactory in comparison with the previously reported results.
文摘This paper presents a versatile method for synthesizing electron-rich polynuclear transition metal clusters with chalcogen bridges and phosphine ligands.The reactions of transition metal complexes(R3P)2MX2(M=Co,Ni;R=Ph,Bu,Et;X=Cl,Br) with bridging reagents Na2Ex (E=S,Se;x=1.2) are described.The geometric and electronic structures of a series of polynuclear transition metal clusters with trianglar M3 units are also discussed.
文摘In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated quickly and defined exactly. In our study, global information will be introduced into the backup protection system. By analyzing and computing real-time PMU measurements, basing on cluster analysis theory, we are using mainly hierarchical cluster analysis to search after the statistical laws of electrical quantities' marked changes. Then we carry out fast and exact detection of fault components and fault sections, and finally accomplish fault isolation. The facts show that the fault detection of fault component (fault section) can be performed successfully by hierarchical cluster analysis and calculation. The results of hierarchical cluster analysis are accurate and reliable, and the dendrograms of hierarchical cluster analysis are in intuition.
文摘随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。
文摘为研究行政单位预算内部控制并提供相应的优化建议,基于K-means聚类算法对数据进行聚类分析。利用德尔菲法设计评价因子,采用SPSS(Statistical Product and Service Solutions)软件在K-means聚类算法的基础上建立行政单位预算内部控制评价模型,分析行政单位内部人员对内部环境满意度、审批人员工作能力、审批效率以及审批质量的看法,找出行政单位预算内部控制存在的问题。结果表明,行政单位预算审批效率与审批质量亟待提高,在预算审批过程中需要注意大额支出审批。实验调查了行政单位预算内部控制目前仍存在的问题,并且提出改进建议。