In order to analyze the condition of s pecial landform and regularity of sp ecial hydrological movement in karst area,the method of Geomorphologic Instantaneous Unit Hydrograph(GIUH)has been used to divide the river n...In order to analyze the condition of s pecial landform and regularity of sp ecial hydrological movement in karst area,the method of Geomorphologic Instantaneous Unit Hydrograph(GIUH)has been used to divide the river net-works into three grades in the research area and the karst hydrologic processes were simulated with Nash insta ntaneous u-nit hydrograph(NIUH).The combination of the GIUH and NIUH fully considers the moving path of wa ter particles in drainage and the regional composition of runoff at the end of the drainage,resulting in a rational combinatio n of probabili-ty of GIUH and NIUH and geomorphologic parameters which could reflect the complexity of the landform structur e of karst drainage.The results showed t hat the combined method of GIUH and NI UH has clear physical concept and acc ept-able precision,which can be widely a pplied on hydrological studies of karst area.展开更多
Unit hydrograph is a very practical tool in runoff prediction which has been used since decades ago and to date it remains useful. Unit hydrograph method is applied in Way Kuala Garuntang, an ungauged catchment in Lam...Unit hydrograph is a very practical tool in runoff prediction which has been used since decades ago and to date it remains useful. Unit hydrograph method is applied in Way Kuala Garuntang, an ungauged catchment in Lampung Province, Indonesia. To derive an observed unit hydrograph it requires rainfall and water level data with fine time scale which are obtained from automatic gauges. Observed unit hydrograph has an advantage that it is possible to derive it for various time steps including those with time step less than an hour. In order to get a more accurate unit hydrograph, it is necessary to derive a unit hydrograph with small time step for a small catchment such as those used in this study. The study area includes Way Kuala Garuntang and its tributaries, i.e. Way Simpur, Way Awi with areas are 60.52 km2, 3.691 km2, and 9.846 km2 respectively. The results of this study highlight the importance of time step selection on unit hydrograph, which are shown to have a significant impact on the resulting unit hydrograph’s variables such as peak discharge and time to peak.展开更多
Unit hydrographs (UH) are either determined from gauged data or derived using empirically-based synthetic unit hydrograph procedures. In Saudi Arabia, the discharge records may not be available either for several loca...Unit hydrographs (UH) are either determined from gauged data or derived using empirically-based synthetic unit hydrograph procedures. In Saudi Arabia, the discharge records may not be available either for several locations or for long time scales, and therefore synthetic unit hydrographs are crucial in flood and water resources management. Available metrological, geological, and land use datasets have been utilized in order to apply the US National Resources Conservative Services (NRCS) methodology in a Geographic Information Systems (GIS) environment. Furthermore, NRCS unit hydrographs have been developed for six watersheds within Makkah metropolitan area, southwest Saudi Arabia. The accomplished results show that the UH time to peak discharge vary from 1.15 hours to 4.47 hours, and the UH peak discharge quantities range from 10.14 m3/s to 16.74 m3/s. It is concluded that the third basin in Makkah city may be considered as the most hazardous catchment. Hence, it is recommended that careful flood protection procedures should be taken in this area within Makkah city.展开更多
The Xinanjiang(XAJ)model has been successfully applied in humid and semi-humid regions.Considering the geomorphologic factors to accurately estimate floods,this study adopted the geomorphologic instantaneous unit hydr...The Xinanjiang(XAJ)model has been successfully applied in humid and semi-humid regions.Considering the geomorphologic factors to accurately estimate floods,this study adopted the geomorphologic instantaneous unit hydrograph(GIUH)method to calculate the surface runoff instead of the experience unit hydrograph(EUH)in the original model.The geomorphologic factors of the case study basin were obtained by using a digital elevation model(DEM)and the Terrain analysis using Digital Elevation Models(TauDEM).Furthermore,the dynamic Muskingum model was used for the channel flood routing.This study focused on the simulation of heavy precipitation and floods over the Chong River,which is a tributary river to the Songhua River on the right bank in northeast China.The detailed steps of the method were shown,up to the estimated value of flood runoff discharges and flood peaks and their comparison with observed values.The average deterministic coefficients(DCs)of model calibration and validation were 0.89 and 0.83,respectively.The results show that the model precision is high and the model is feasible for flood forecasting.Lastly,some methodological perspectives to enhance the method are presented.展开更多
A model to derive direct runoff hydrograph for an ungauged basin using the physical properties of the basin is presented. The basin is divided into grid cells and canal elements. Overland flow is generated from each g...A model to derive direct runoff hydrograph for an ungauged basin using the physical properties of the basin is presented. The basin is divided into grid cells and canal elements. Overland flow is generated from each grid cell of the basin by application of continuous effective rainfall of I mm/hr to the basin, The flow generated is routed through downstream grid cells and the canal elements using the kinematic wave approach. The travel time for direct runoff from each grid cell to the basin outlet is calculated and the S-curve is derived for the basin. The S-curve is used to derive the unit hydrograph of a given duration for the basin. The model, referred as Cell-basin model was applied to the Upper Kotmale Basin in Sri Lanka and the model predictions of direct runoff hydrographs for rainfall events agreed with the observations to a reasonable accuracy. Comparison of the unit hydrographs obtained from the model and from the conventional Snyder's synthetic unit hydrograph using regionalized parameters assuming the basin as an ungauged basin, with the unit hydrograph derived from the observations showed that the model predicted unit hydrograph was more suitable than that obtained by Snyder's method for Sri Lankan up country basins. Thus, the present model is a useful tool to obtain direct runoff hydrograph for ungauged basins.展开更多
文摘In order to analyze the condition of s pecial landform and regularity of sp ecial hydrological movement in karst area,the method of Geomorphologic Instantaneous Unit Hydrograph(GIUH)has been used to divide the river net-works into three grades in the research area and the karst hydrologic processes were simulated with Nash insta ntaneous u-nit hydrograph(NIUH).The combination of the GIUH and NIUH fully considers the moving path of wa ter particles in drainage and the regional composition of runoff at the end of the drainage,resulting in a rational combinatio n of probabili-ty of GIUH and NIUH and geomorphologic parameters which could reflect the complexity of the landform structur e of karst drainage.The results showed t hat the combined method of GIUH and NI UH has clear physical concept and acc ept-able precision,which can be widely a pplied on hydrological studies of karst area.
文摘Unit hydrograph is a very practical tool in runoff prediction which has been used since decades ago and to date it remains useful. Unit hydrograph method is applied in Way Kuala Garuntang, an ungauged catchment in Lampung Province, Indonesia. To derive an observed unit hydrograph it requires rainfall and water level data with fine time scale which are obtained from automatic gauges. Observed unit hydrograph has an advantage that it is possible to derive it for various time steps including those with time step less than an hour. In order to get a more accurate unit hydrograph, it is necessary to derive a unit hydrograph with small time step for a small catchment such as those used in this study. The study area includes Way Kuala Garuntang and its tributaries, i.e. Way Simpur, Way Awi with areas are 60.52 km2, 3.691 km2, and 9.846 km2 respectively. The results of this study highlight the importance of time step selection on unit hydrograph, which are shown to have a significant impact on the resulting unit hydrograph’s variables such as peak discharge and time to peak.
文摘Unit hydrographs (UH) are either determined from gauged data or derived using empirically-based synthetic unit hydrograph procedures. In Saudi Arabia, the discharge records may not be available either for several locations or for long time scales, and therefore synthetic unit hydrographs are crucial in flood and water resources management. Available metrological, geological, and land use datasets have been utilized in order to apply the US National Resources Conservative Services (NRCS) methodology in a Geographic Information Systems (GIS) environment. Furthermore, NRCS unit hydrographs have been developed for six watersheds within Makkah metropolitan area, southwest Saudi Arabia. The accomplished results show that the UH time to peak discharge vary from 1.15 hours to 4.47 hours, and the UH peak discharge quantities range from 10.14 m3/s to 16.74 m3/s. It is concluded that the third basin in Makkah city may be considered as the most hazardous catchment. Hence, it is recommended that careful flood protection procedures should be taken in this area within Makkah city.
文摘The Xinanjiang(XAJ)model has been successfully applied in humid and semi-humid regions.Considering the geomorphologic factors to accurately estimate floods,this study adopted the geomorphologic instantaneous unit hydrograph(GIUH)method to calculate the surface runoff instead of the experience unit hydrograph(EUH)in the original model.The geomorphologic factors of the case study basin were obtained by using a digital elevation model(DEM)and the Terrain analysis using Digital Elevation Models(TauDEM).Furthermore,the dynamic Muskingum model was used for the channel flood routing.This study focused on the simulation of heavy precipitation and floods over the Chong River,which is a tributary river to the Songhua River on the right bank in northeast China.The detailed steps of the method were shown,up to the estimated value of flood runoff discharges and flood peaks and their comparison with observed values.The average deterministic coefficients(DCs)of model calibration and validation were 0.89 and 0.83,respectively.The results show that the model precision is high and the model is feasible for flood forecasting.Lastly,some methodological perspectives to enhance the method are presented.
文摘A model to derive direct runoff hydrograph for an ungauged basin using the physical properties of the basin is presented. The basin is divided into grid cells and canal elements. Overland flow is generated from each grid cell of the basin by application of continuous effective rainfall of I mm/hr to the basin, The flow generated is routed through downstream grid cells and the canal elements using the kinematic wave approach. The travel time for direct runoff from each grid cell to the basin outlet is calculated and the S-curve is derived for the basin. The S-curve is used to derive the unit hydrograph of a given duration for the basin. The model, referred as Cell-basin model was applied to the Upper Kotmale Basin in Sri Lanka and the model predictions of direct runoff hydrographs for rainfall events agreed with the observations to a reasonable accuracy. Comparison of the unit hydrographs obtained from the model and from the conventional Snyder's synthetic unit hydrograph using regionalized parameters assuming the basin as an ungauged basin, with the unit hydrograph derived from the observations showed that the model predicted unit hydrograph was more suitable than that obtained by Snyder's method for Sri Lankan up country basins. Thus, the present model is a useful tool to obtain direct runoff hydrograph for ungauged basins.