This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, ...This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, which makes it very hard to handle the corresponding mathematical models. However, Teaching Learning Based Optimization (TLBO) has reached a high efficiency, in terms of solution accuracy and computing time for such non convex problems. Hence, TLBO is applied for scheduling of generators with higher order cost characteristics, and turns out to be computationally solvable. In particular, we represent a model that takes into account the accurate higher order generator cost functions along with ramp limits, and turns to be more general and efficient than those available in the literature. The behavior of the model is analyzed through proposed technique on modified IEEE-24 bus system.展开更多
Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Relaxation framework is partitioned into two stages: one is to obtain feasible SCUC states;the other is to so...Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Relaxation framework is partitioned into two stages: one is to obtain feasible SCUC states;the other is to solve the economic dispatch of generation power among all the generating units. The core of the two stages is how to determine the feasibility of SCUC states. The existence of ramp rate constraints and security constraints increases the difficulty of obtaining an analytical necessary and sufficient condition for determining the quasi-feasibility of SCUC states at each scheduling time. However, a numerical necessary and sufficient numerical condition is proposed and proven rigorously based on Benders Decomposition Theorem. Testing numerical example shows the effectiveness and efficiency of the condition.展开更多
The aim of this paper is simultaneous mini- mization of hydrothermal units to reach the best solution by employing an improved artificial bee colony (ABC) algorithm in a multi-objective function consisting of econom...The aim of this paper is simultaneous mini- mization of hydrothermal units to reach the best solution by employing an improved artificial bee colony (ABC) algorithm in a multi-objective function consisting of economic dispatch (ED) considering the valve-point effect and pollution function in power systems in view of the hot water of the hydro system. In this type of optimization problem, all practical constraints of units were taken into account as much as possible in order to comply with the reality. These constraints include the maximum and minimum output power of units, the constraints caused by the balance between supply and demand, the impact of pollution, water balance, uneven production curve con- sidering the valve-point effect and system losses. The proposed algorithm is applied on the studied system, and the obtained results indifferent operating conditions are analyzed. To investigate in various operating conditions, different load profiles in 12 h are taken into account. The obtained results are compared with those of the other methods including the genetfc algorithm (GA), the Basu technique, and the improved genetic algorithm. Fast convergence is one of this improved algorithm features.展开更多
文摘This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, which makes it very hard to handle the corresponding mathematical models. However, Teaching Learning Based Optimization (TLBO) has reached a high efficiency, in terms of solution accuracy and computing time for such non convex problems. Hence, TLBO is applied for scheduling of generators with higher order cost characteristics, and turns out to be computationally solvable. In particular, we represent a model that takes into account the accurate higher order generator cost functions along with ramp limits, and turns to be more general and efficient than those available in the literature. The behavior of the model is analyzed through proposed technique on modified IEEE-24 bus system.
文摘Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Relaxation framework is partitioned into two stages: one is to obtain feasible SCUC states;the other is to solve the economic dispatch of generation power among all the generating units. The core of the two stages is how to determine the feasibility of SCUC states. The existence of ramp rate constraints and security constraints increases the difficulty of obtaining an analytical necessary and sufficient condition for determining the quasi-feasibility of SCUC states at each scheduling time. However, a numerical necessary and sufficient numerical condition is proposed and proven rigorously based on Benders Decomposition Theorem. Testing numerical example shows the effectiveness and efficiency of the condition.
文摘The aim of this paper is simultaneous mini- mization of hydrothermal units to reach the best solution by employing an improved artificial bee colony (ABC) algorithm in a multi-objective function consisting of economic dispatch (ED) considering the valve-point effect and pollution function in power systems in view of the hot water of the hydro system. In this type of optimization problem, all practical constraints of units were taken into account as much as possible in order to comply with the reality. These constraints include the maximum and minimum output power of units, the constraints caused by the balance between supply and demand, the impact of pollution, water balance, uneven production curve con- sidering the valve-point effect and system losses. The proposed algorithm is applied on the studied system, and the obtained results indifferent operating conditions are analyzed. To investigate in various operating conditions, different load profiles in 12 h are taken into account. The obtained results are compared with those of the other methods including the genetfc algorithm (GA), the Basu technique, and the improved genetic algorithm. Fast convergence is one of this improved algorithm features.