The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( ...The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( λj+ nH),S = ∑i( λi+ nH)~2, where h(ij)= λiδ(ij). Utilizing Lagrange's method, a sharper pointwise estimation of 3(A- 2B) in terms of S and |▽h|~2 is obtained, here |▽h|~2= ∑i,j,k h(ijk)~2. Then, with the help of this, it is proved that Mis isometric to the Clifford hypersurface if the square norm of the second fundamental form of Msatisfies certain conditions. Hence, the pinching result of the minimal hypersurface is extended to the hypersurface with constant mean curvature case.展开更多
This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figie...This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figiel theorem on the whole space cannot be trivially generalized to this case,and this is pointed out by a counterexample.After establishing this,we find a natural necessary condition required by the existence of the Figiel operator.Furthermore,we prove that when X is a space with the T-property,this condition is also sufficient for an isometric embedding T:S_(X)→S_(Y) to admit the Figiel operator.This answers the Figiel type problem on unit spheres for a large class of spaces.In the second part,we consider the extension of bijectiveε-isometries between unit spheres of two Banach spaces.It is shown that every bijectiveε-isometry between unit spheres of a local GL-space and another Banach space can be extended to be a bijective 5ε-isometry between the corresponding unit balls.In particular,whenε=0,this recovers the MUP for local GL-spaces obtained in[40].展开更多
In this paper, we investigate isometric extension problem in general normed space. We prove that an isometry between spheres can be extended to a linear isometry between the spaces if and only if the natural positive ...In this paper, we investigate isometric extension problem in general normed space. We prove that an isometry between spheres can be extended to a linear isometry between the spaces if and only if the natural positive homogeneous extension is additive on spheres. Moreover, this conclusion still holds provided that the additivity holds on a restricted domain of spheres.展开更多
The operaton on the n-complex unit sphere under study have three forms: the singular integrals with holomorphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic ...The operaton on the n-complex unit sphere under study have three forms: the singular integrals with holomorphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic functional calculus of the radial Dirac operator $D = \sum\nolimits_{k = 1}^n {z_k \frac{\partial }{{\partial _{z_k } }}} $ . The equivalence between the three fom and the strong-type (p,p), 1 <p < ∞, and weak-type (1,1)-boundedness of the operators is proved. The results generalise the work of L. K. Hua, A. Korányli and S. Vagi, W. Rudin and S. Gong on the Cauchy-Szeg?, kemel and the Cauchy singular integral operator.展开更多
We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner...We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner product defined on both the unit ball and the unit sphere, construct the kernel-regularized learning algorithm from the view of semi-supervised learning and bound the upper bounds for the learning rates. The theory analysis shows that the learning algorithm has better uniform convergence according to the number of samples. The research can be regarded as an application of kernel-regularized semi-supervised learning.展开更多
We offer a new approach to deal with the pointwise convergence of FourierLaplace series on the unit sphere of even-dimensional Euclidean spaces. By using spherical monogenics defined through the generalized Cauchy-Rie...We offer a new approach to deal with the pointwise convergence of FourierLaplace series on the unit sphere of even-dimensional Euclidean spaces. By using spherical monogenics defined through the generalized Cauchy-Riemann operator, we obtain the spherical monogenic expansions of square integrable functions on the unit sphere. Based on the generalization of Fueter's theorem inducing monogenic functions from holomorphic functions in the complex plane and the classical Carleson's theorem, a pointwise convergence theorem on the new expansion is proved. The result is a generalization of Carleson's theorem to the higher dimensional Euclidean spaces. The approach is simpler than those by using special functions, which may have the advantage to induce the singular integral approach for pointwise convergence problems on the spheres.展开更多
文摘The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( λj+ nH),S = ∑i( λi+ nH)~2, where h(ij)= λiδ(ij). Utilizing Lagrange's method, a sharper pointwise estimation of 3(A- 2B) in terms of S and |▽h|~2 is obtained, here |▽h|~2= ∑i,j,k h(ijk)~2. Then, with the help of this, it is proved that Mis isometric to the Clifford hypersurface if the square norm of the second fundamental form of Msatisfies certain conditions. Hence, the pinching result of the minimal hypersurface is extended to the hypersurface with constant mean curvature case.
基金the National Nature Science Foundation of China(11671214,11971348,12071230)the Hundred Young Academia Leaders Program of Nankai University(63223027,ZB22000105)+1 种基金the Undergraduate Education and Teaching Project of Nankai University(NKJG2022053)the National College Students’Innovation and Entrepreneurship Training Program of Nankai University(202210055048)。
文摘This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figiel theorem on the whole space cannot be trivially generalized to this case,and this is pointed out by a counterexample.After establishing this,we find a natural necessary condition required by the existence of the Figiel operator.Furthermore,we prove that when X is a space with the T-property,this condition is also sufficient for an isometric embedding T:S_(X)→S_(Y) to admit the Figiel operator.This answers the Figiel type problem on unit spheres for a large class of spaces.In the second part,we consider the extension of bijectiveε-isometries between unit spheres of two Banach spaces.It is shown that every bijectiveε-isometry between unit spheres of a local GL-space and another Banach space can be extended to be a bijective 5ε-isometry between the corresponding unit balls.In particular,whenε=0,this recovers the MUP for local GL-spaces obtained in[40].
基金Supported by National Natural Science Foundation of China(Grant Nos.11301384,11371201,11201337 and11201338)
文摘In this paper, we investigate isometric extension problem in general normed space. We prove that an isometry between spheres can be extended to a linear isometry between the spaces if and only if the natural positive homogeneous extension is additive on spheres. Moreover, this conclusion still holds provided that the additivity holds on a restricted domain of spheres.
文摘The operaton on the n-complex unit sphere under study have three forms: the singular integrals with holomorphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic functional calculus of the radial Dirac operator $D = \sum\nolimits_{k = 1}^n {z_k \frac{\partial }{{\partial _{z_k } }}} $ . The equivalence between the three fom and the strong-type (p,p), 1 <p < ∞, and weak-type (1,1)-boundedness of the operators is proved. The results generalise the work of L. K. Hua, A. Korányli and S. Vagi, W. Rudin and S. Gong on the Cauchy-Szeg?, kemel and the Cauchy singular integral operator.
文摘We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner product defined on both the unit ball and the unit sphere, construct the kernel-regularized learning algorithm from the view of semi-supervised learning and bound the upper bounds for the learning rates. The theory analysis shows that the learning algorithm has better uniform convergence according to the number of samples. The research can be regarded as an application of kernel-regularized semi-supervised learning.
基金Sponsored by Research Grant of the University of Macao No. RG024/03-04S/QT/FST
文摘We offer a new approach to deal with the pointwise convergence of FourierLaplace series on the unit sphere of even-dimensional Euclidean spaces. By using spherical monogenics defined through the generalized Cauchy-Riemann operator, we obtain the spherical monogenic expansions of square integrable functions on the unit sphere. Based on the generalization of Fueter's theorem inducing monogenic functions from holomorphic functions in the complex plane and the classical Carleson's theorem, a pointwise convergence theorem on the new expansion is proved. The result is a generalization of Carleson's theorem to the higher dimensional Euclidean spaces. The approach is simpler than those by using special functions, which may have the advantage to induce the singular integral approach for pointwise convergence problems on the spheres.