Let V be a multiplicative unitary operator on a separable Hilbert spaceH, then there are two subalgebras ofB( H) denoted byA( V) and ?( V), respectively, which correspond to V. If V satisfiesV 2 =I, then we will obtai...Let V be a multiplicative unitary operator on a separable Hilbert spaceH, then there are two subalgebras ofB( H) denoted byA( V) and ?( V), respectively, which correspond to V. If V satisfiesV 2 =I, then we will obtain the necessary and sufficient condition of Baaj and Skandalis’ main theorem, i.e.V has a Kac-system if and only if the linear closed space of the product of the above two algebras is the compact operator space; with this condition the above algebras are also quantum groups.展开更多
In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional produc...In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.展开更多
The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From th...The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α1 = α2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α3 may play active role to the entanglement capacity when auxiliary systems are allowed.展开更多
Noiseless linear amplification (NLA), first proposed by Ralpha et al., is a nondeterministic amplification process which gives gain to the Fock state |n) → gn|n), with g being the amplification gain. We here gi...Noiseless linear amplification (NLA), first proposed by Ralpha et al., is a nondeterministic amplification process which gives gain to the Fock state |n) → gn|n), with g being the amplification gain. We here give a general frame- work for improving the NLA scheme with arbitrary general local unitary operations. We derive the improvement in the amplification gain in 0 1 photon subspace. In particular, we study if the local unitary is composed of sin- gle mode squeezing and coherent displacement operation. Finally, numerical simulations show that local unitary operation could give a further enhancement in the amplification gain as well as the success probability, making the NLA more feasible in future optic quantum communications.展开更多
We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of trans...We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of translation operator in curved space followed by its relation with an anti-Hermitian generator.Also we introduce a universal formula for adjoint of an arbitrary linear operator.Our procedure in this paper is totally different from others,as we explore a general approach based only on the algebra of the operators.Our approach is only discussed for the translation operators in one-dimensional space and not for general operators.展开更多
An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein-Podolsky-Rosen (EPR) pair block as the quantum information carrier. The server, say Alice,...An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein-Podolsky-Rosen (EPR) pair block as the quantum information carrier. The server, say Alice, prepares and measures the EPR pairs in the quantum communication and the users perform the four local unitary operations to encode their message. Anyone of the legitimate users can communicate another one on the network securely. Since almost all of the instances in this scheme are useful and each EPR pair can carry two bits of information, the efficiency for qubits and the source capacity both approach the maximal values.展开更多
In this paper a quantum dialogue scheme is proposed by using N batches of single photons. The same secret message is encoded on each batch of single photons by the sender with two different unitary operations, and the...In this paper a quantum dialogue scheme is proposed by using N batches of single photons. The same secret message is encoded on each batch of single photons by the sender with two different unitary operations, and then the N batches of single photons are sent to the receiver. After eavesdropping check, the message is encoded on the one remaining batch by the receiver. It is shown that the intercept-and-resend attack and coupling auxiliary modes attack can be resisted more efficiently, because the photons are sent only once in our quantum dialogue scheme.展开更多
An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the phot...An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.展开更多
I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state m...I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.展开更多
I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers.The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zei...I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers.The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zeilinger (GHZ) state and a W-type state.I try to realize the remote two-qubit preparation by using the usual projective measurement and the method of positive operator-valued measure,respectively.The corresponding success probabilities of the scheme with different methods as well as the total classical communication cost required in this scheme are also calculated.展开更多
Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i....Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i.e, α[0...0〉 +β[1... 1〉) were proposed, respectively. In this paper, by applying the controlled-not (CNOT) gate, a new simple protocol is proposed for remotely preparing such class of states. Compared to the previous protocols, both classical communication cost and required quantum entanglement in our protocol are remarkably reduced. Moreover, the difficulty of identifying some quantum states in our protocol is also degraded. Hence our protocol is more economical and feasible.展开更多
We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward c...We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward classical bits, the preparation of the original state can be successfully realized with the probability 1/2, the necessary classical communication cost is 0.5 bit on average. If the state to be prepared belongs to some special states, the success probability of preparation can achieve 1 after consuming one extra bit on average. We then generalize this scheme to the case that the quantum channels consist of two non-maximally entangled states.展开更多
A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence ...A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of trans- mission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.展开更多
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional...By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.展开更多
We introduce a protocol for QKD based on reusable entangled states. In this protocol, the EPR pairs act as a quantum key to encode and decode information particles. And only an information particle travels between the...We introduce a protocol for QKD based on reusable entangled states. In this protocol, the EPR pairs act as a quantum key to encode and decode information particles. And only an information particle travels between the legitimated users. This improves the security and efficiency of communication. In addition, we show that its extension to a new QSS protocol is also secure and efficient.展开更多
A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her M agents first share a sequence of (M + 1)-particle Greenberger-Horne-Zeilinger (GHZ) states that only Alice k...A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her M agents first share a sequence of (M + 1)-particle Greenberger-Horne-Zeilinger (GHZ) states that only Alice knows which state each (M + 1)-particle quantum system is in. Each agent exploits a controlled-not (CNot) gate to encrypt the travelling particle by using the particle in the GHZ state as the control qubit. The boss Alice decrypts the travelling particle with a CNot gate after performing a aσ∞ operation on her particle in the GHZ state or not. After the GHZ states (the quantum key) are used up, the parties check whether there is a vicious eavesdropper, say Eve, monitoring the quantum line, by picking out some samples from the GHZ states shared and measuring them with two measuring bases. After confirming the security of the quantum key, they use the remaining GHZ states repeatedly for the next round of quantum communication. This scheme has the advantage of high intrinsic efficiency for the qubits and total efficiency.展开更多
We propose a scheme for sharing an arbitrary unknown two-qubit state among three parties by using afour-qubit cluster-class state and a Bell state as a quantum channel With a quantum controlled phase gate (QCPG)operat...We propose a scheme for sharing an arbitrary unknown two-qubit state among three parties by using afour-qubit cluster-class state and a Bell state as a quantum channel With a quantum controlled phase gate (QCPG)operation and a local unitary operation,any one of the two agents has the access to reconstruct the original state ifhe/she collaborates with the other one,whilst individual agent obtains no information.As all quantum resource canbe used to carry the useful information,the intrinsic efficiency of qubits approaches the maximal value.Moreover,thepresent scheme is more feasible with present-day technique.展开更多
Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, ...Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.展开更多
We propose a scheme to realize quantum cloning of an unknown M-qudit equatorial-like entangled state. The first stage of the protocol requires teleportation. After the teleportation is accomplished, the receiver can r...We propose a scheme to realize quantum cloning of an unknown M-qudit equatorial-like entangled state. The first stage of the protocol requires teleportation. After the teleportation is accomplished, the receiver can reestablish the original state. In the second stage of the protocol, with the assistance (through a single-particle projective measurement) of the preparer, the perfect copy of an original state can be produced at the site of the sender. Our scheme requires a single maximally entangled qudit pair as the quantum channel and three dits classical communication. The scheme is feasible at the expense of consuming local resources which include M - 1 ancillary qudits introduced by the receiver and additional bi-qudit operations. Moreover, we construct a sort of unitary transformations which ensure ancillary qudits are not necessarily introduced by the sender. Comparing to the previous protocols, the proposed protocol is economical due to that the cost of both quantum nonlocal resources and classical communication is lowest.展开更多
文摘Let V be a multiplicative unitary operator on a separable Hilbert spaceH, then there are two subalgebras ofB( H) denoted byA( V) and ?( V), respectively, which correspond to V. If V satisfiesV 2 =I, then we will obtain the necessary and sufficient condition of Baaj and Skandalis’ main theorem, i.e.V has a Kac-system if and only if the linear closed space of the product of the above two algebras is the compact operator space; with this condition the above algebras are also quantum groups.
基金supported by the National Natural Science Foundation of China(Grant No.12301590)the Natural Science Foundation of Hebei Province(Grant No.A2022210002)。
文摘In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.
基金The project supported by National Natural Science Foundation of China under Grant No. 60433050
文摘The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α1 = α2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α3 may play active role to the entanglement capacity when auxiliary systems are allowed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304013,11204197,11204379 and 11074244the National Basic Research Program of China under Grant No 2011CBA00200+1 种基金the Doctor Science Research Foundation of Ministry of Education of China under Grant No 20113402110059Civil Aerospace 2013669
文摘Noiseless linear amplification (NLA), first proposed by Ralpha et al., is a nondeterministic amplification process which gives gain to the Fock state |n) → gn|n), with g being the amplification gain. We here give a general frame- work for improving the NLA scheme with arbitrary general local unitary operations. We derive the improvement in the amplification gain in 0 1 photon subspace. In particular, we study if the local unitary is composed of sin- gle mode squeezing and coherent displacement operation. Finally, numerical simulations show that local unitary operation could give a further enhancement in the amplification gain as well as the success probability, making the NLA more feasible in future optic quantum communications.
文摘We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of translation operator in curved space followed by its relation with an anti-Hermitian generator.Also we introduce a universal formula for adjoint of an arbitrary linear operator.Our procedure in this paper is totally different from others,as we explore a general approach based only on the algebra of the operators.Our approach is only discussed for the translation operators in one-dimensional space and not for general operators.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10447106, 10435020, 10254002, A0325401 and 10374010, and Beijing Education Committee under Grant No XK100270454.
文摘An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein-Podolsky-Rosen (EPR) pair block as the quantum information carrier. The server, say Alice, prepares and measures the EPR pairs in the quantum communication and the users perform the four local unitary operations to encode their message. Anyone of the legitimate users can communicate another one on the network securely. Since almost all of the instances in this scheme are useful and each EPR pair can carry two bits of information, the efficiency for qubits and the source capacity both approach the maximal values.
基金Project supported by the Science Foundation of Yanbian University of China (Grant No 2005-20).
文摘In this paper a quantum dialogue scheme is proposed by using N batches of single photons. The same secret message is encoded on each batch of single photons by the sender with two different unitary operations, and then the N batches of single photons are sent to the receiver. After eavesdropping check, the message is encoded on the one remaining batch by the receiver. It is shown that the intercept-and-resend attack and coupling auxiliary modes attack can be resisted more efficiently, because the photons are sent only once in our quantum dialogue scheme.
基金Supported by the National Natural Science Foundation of China under Grant No 10447106, and Beijing Education Committee under Grant No XK100270454.
文摘An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.
基金Supported by the 211 Project of Anhui University under Grant No.2009QN028B
文摘I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.
基金Supported by the 211 Project of Anhui University under Grant No.2009QN028B
文摘I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers.The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zeilinger (GHZ) state and a W-type state.I try to realize the remote two-qubit preparation by using the usual projective measurement and the method of positive operator-valued measure,respectively.The corresponding success probabilities of the scheme with different methods as well as the total classical communication cost required in this scheme are also calculated.
基金supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i.e, α[0...0〉 +β[1... 1〉) were proposed, respectively. In this paper, by applying the controlled-not (CNOT) gate, a new simple protocol is proposed for remotely preparing such class of states. Compared to the previous protocols, both classical communication cost and required quantum entanglement in our protocol are remarkably reduced. Moreover, the difficulty of identifying some quantum states in our protocol is also degraded. Hence our protocol is more economical and feasible.
基金the Program for New Century Excellent Talents at Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science-Technology Fund of Auhui Province for Outstanding Youth uniter Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006AB354
文摘We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward classical bits, the preparation of the original state can be successfully realized with the probability 1/2, the necessary classical communication cost is 0.5 bit on average. If the state to be prepared belongs to some special states, the success probability of preparation can achieve 1 after consuming one extra bit on average. We then generalize this scheme to the case that the quantum channels consist of two non-maximally entangled states.
文摘A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of trans- mission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130532)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(Grant No.13KJB140003)the Postdoctoral Science Foundation of China(Grant No.2013M541608)the Postdoctoral Science Foundation of Jiangsu Province,China(Grant No.1202012B)
文摘By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
基金supported by National Natural Science Foundation of China under Crant No.10575017
文摘We introduce a protocol for QKD based on reusable entangled states. In this protocol, the EPR pairs act as a quantum key to encode and decode information particles. And only an information particle travels between the legitimated users. This improves the security and efficiency of communication. In addition, we show that its extension to a new QSS protocol is also secure and efficient.
基金Supported by the National Natural Science Foundation of China under Grant No 10447106, and Beijing Education Committee under Grant No XK100270454.
文摘A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her M agents first share a sequence of (M + 1)-particle Greenberger-Horne-Zeilinger (GHZ) states that only Alice knows which state each (M + 1)-particle quantum system is in. Each agent exploits a controlled-not (CNot) gate to encrypt the travelling particle by using the particle in the GHZ state as the control qubit. The boss Alice decrypts the travelling particle with a CNot gate after performing a aσ∞ operation on her particle in the GHZ state or not. After the GHZ states (the quantum key) are used up, the parties check whether there is a vicious eavesdropper, say Eve, monitoring the quantum line, by picking out some samples from the GHZ states shared and measuring them with two measuring bases. After confirming the security of the quantum key, they use the remaining GHZ states repeatedly for the next round of quantum communication. This scheme has the advantage of high intrinsic efficiency for the qubits and total efficiency.
基金Supported by the Natural Science Research Programme of the Education Department of Anhui Province under Grant Nos.KJ2009B039Z and KJ2009B018Zthe Municipal Level Research Project from Lu'an City directive entrusted to West AnHui University under Grant No.2008LW004
文摘We propose a scheme for sharing an arbitrary unknown two-qubit state among three parties by using afour-qubit cluster-class state and a Bell state as a quantum channel With a quantum controlled phase gate (QCPG)operation and a local unitary operation,any one of the two agents has the access to reconstruct the original state ifhe/she collaborates with the other one,whilst individual agent obtains no information.As all quantum resource canbe used to carry the useful information,the intrinsic efficiency of qubits approaches the maximal value.Moreover,thepresent scheme is more feasible with present-day technique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61303039 and 61201253)Chunying Fellowship,and Fundamental Research Funds for the Central Universities,China(Grant No.2682014CX095)
文摘Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.
基金Supported by the National Basic Research Program of China (973 Program) under Grant No.2007CB311203the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme under Grant No.60731160626+1 种基金the National Natural Science Foundation of China under Grant Nos.60873191, 60903152, 60821001the Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0220 and the 111 Project under Grant No.B08004
文摘We propose a scheme to realize quantum cloning of an unknown M-qudit equatorial-like entangled state. The first stage of the protocol requires teleportation. After the teleportation is accomplished, the receiver can reestablish the original state. In the second stage of the protocol, with the assistance (through a single-particle projective measurement) of the preparer, the perfect copy of an original state can be produced at the site of the sender. Our scheme requires a single maximally entangled qudit pair as the quantum channel and three dits classical communication. The scheme is feasible at the expense of consuming local resources which include M - 1 ancillary qudits introduced by the receiver and additional bi-qudit operations. Moreover, we construct a sort of unitary transformations which ensure ancillary qudits are not necessarily introduced by the sender. Comparing to the previous protocols, the proposed protocol is economical due to that the cost of both quantum nonlocal resources and classical communication is lowest.