To guarantee a unified response to disasters, humanitarian organizations work together via the United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Although the OCHA has made great strides to imp...To guarantee a unified response to disasters, humanitarian organizations work together via the United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Although the OCHA has made great strides to improve its information management and increase the availability of accurate, real-time data for disaster and humanitarian response teams, significant gaps persist. There are inefficiencies in the emergency management of data at every stage of its lifecycle: collection, processing, analysis, distribution, storage, and retrieval. Disaster risk reduction and disaster risk management are the two main tenets of the United Nations’ worldwide plan for disaster management. Information systems are crucial because of the crucial roles they play in capturing, processing, and transmitting data. The management of information is seldom discussed in published works. The goal of this study is to employ qualitative research methods to provide insight by facilitating an expanded comprehension of relevant contexts, phenomena, and individual experiences. Humanitarian workers and OCHA staffers will take part in the research. The study subjects will be chosen using a random selection procedure. Online surveys with both closed- and open-ended questions will be used to compile the data. UN OCHA offers a structure for the handling of information via which all humanitarian actors may contribute to the overall response. This research will enable the UN Office for OCHA better gather, process, analyze, disseminate, store, and retrieve data in the event of a catastrophe or humanitarian crisis.展开更多
Two new coordination polymers,[ZnL1]n(1,H2L1 = 5-(4-pyridyl)-methoxyl isophthalic acid) and[Ni(L2)2(H2O)4]n(2,HL2 = 4-(pyridin-4-ylmethoxy)benzolic acid),have been synthesized and characterized by elementa...Two new coordination polymers,[ZnL1]n(1,H2L1 = 5-(4-pyridyl)-methoxyl isophthalic acid) and[Ni(L2)2(H2O)4]n(2,HL2 = 4-(pyridin-4-ylmethoxy)benzolic acid),have been synthesized and characterized by elemental analysis,PXRD,IR spectra,and single-crystal X-ray diffraction.Compound 1 has a three-dimensional framework constructed by 6-bridged L1^2- anions connecting the Zn2(O2C)4 paddlewheel-like units.Compound 2 contains a mononuclear molecular unit,and the central nickel atom adopts a slightly distorted octahedral geometry by two nitrogen atoms from different L2^- ligands and four oxygen atoms from water molecules.These molecular units link each other via four types of O-H…O hydrogen bonds to form an extended three-dimensional(3D) supramolecular network.The thermal and photoluminescent properties of 1 and 2 have also been investigated.展开更多
From the perspective of growth units, the growth mechanism of Mg2(OH)2CO3.3H2O whisker is investigated in this paper. Results show that the growth morphology of Mg2(OH)2CO33H2O whisker is consistent with the model...From the perspective of growth units, the growth mechanism of Mg2(OH)2CO3.3H2O whisker is investigated in this paper. Results show that the growth morphology of Mg2(OH)2CO33H2O whisker is consistent with the model of anion coordination polyhedron growth units. The growth solution Raman shift of Mg2(OH)2CO;3H2O was monitored using Raman spectroscopy. The growth units are [Mg-(OH)4]2- and H2COv The growth process of Mg2(OH)2COf3H2O whisker is as follows: growth unit [Mg-(OH)4]2- first incorporates into the larger dimension [Mg-(OH)4]2-, then the [Mg-(OH)4]2-n combines with H2CO3 into a linear skeleton Mg2(OH)2CO3 in the same line. Mg2(OH)2CO3 combines with H2O by hydrogen bonds and ultimately transforms into Mg2(OH)2COf3H2O whisker. Magnesium carbonate whiskers have a layered structure, each of which is made of magnesium, carbon, oxygen, with H2O in between each layer. When skeletons are superimposed within the same plane as a parallelepiped one, they grow into solid cuboid-shaped whiskers. When the parallelepiped skeletons planes combine with each other through the cascading links, they grow into hollow cylindrical whiskers.展开更多
The growth habit of the basic magnesium oxysulfate whisker was investigated based on the theoreticalmodelof anion coordination polyhedron growth units.It is found that typicalbasic magnesium oxysulfate whisker growth ...The growth habit of the basic magnesium oxysulfate whisker was investigated based on the theoreticalmodelof anion coordination polyhedron growth units.It is found that typicalbasic magnesium oxysulfate whisker growth is consistent with anion tetrahedralcoordination incorporation rules.The growth units of basic magnesium oxysulfate whiskers are [Mg-(OH)_4]^(2-) and HSO_4^-.[Mg-(OH)_4]^(2-) is the favorable growth unit and whisker growth is in the direction of the [Mg-(OH)_4]^(2-) combination.A plurality of [Mg-(OH)_4]^(2-) s combine and become a larger dimensionalgrowth unit in a one-dimensionaldirection.Then HSO_4^- and larger dimensionalgrowth units connect as basic magnesium sulfate whiskers,according to the structuralcharacteristics of the basic magnesium sulfate whisker,which can guide the synthesis of magnesium hydroxide whisker.展开更多
From the point of growth units, the growth mechanism of hydrotalcite (HT) crystal is investigated in this paper. Results show that the growth morphology of HT is consistent with the model of anion coordination polyhed...From the point of growth units, the growth mechanism of hydrotalcite (HT) crystal is investigated in this paper. Results show that the growth morphology of HT is consistent with the model of anion coordination polyhedron growth units. The Raman shift of growth solutions of HT, Cu-HTlc, and Cu-Zn-HTlc are monitored using Raman spectroscopy. In the experiment, the growth units of Mg-Al-hydrotalcite are [Mg-(OH)6]4- and [Al-(OH)6]3-, and the growth units of Cu-Htlc and Cu-Zn-HTlc are [Mg-(OH)6]4- and [Al-(OH)6]3-, respectively. The growth process of hydrotalcite is as follows: growth units first incorpo- rate into metal layers, then metal layers adsorb An- and H2O, and the growth units incorporate into layer compounds according to this rule. Growth units will have different incorporations and growth morphologies caused by different growth surroundings. Furthermore, the reason why Cu-HTlc is difficult to synthesize is also interpreted in this paper.展开更多
A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating...A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 4^(24)·5·6~3 topology. Moreover,the thermal stability and luminescence property of this compound have been investigated.展开更多
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the ...As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics(SPH) method is used to model the compressible fluid, the natural coordinate formulation(NCF) and absolute nodal coordinate formulation(ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit(GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.展开更多
文摘To guarantee a unified response to disasters, humanitarian organizations work together via the United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Although the OCHA has made great strides to improve its information management and increase the availability of accurate, real-time data for disaster and humanitarian response teams, significant gaps persist. There are inefficiencies in the emergency management of data at every stage of its lifecycle: collection, processing, analysis, distribution, storage, and retrieval. Disaster risk reduction and disaster risk management are the two main tenets of the United Nations’ worldwide plan for disaster management. Information systems are crucial because of the crucial roles they play in capturing, processing, and transmitting data. The management of information is seldom discussed in published works. The goal of this study is to employ qualitative research methods to provide insight by facilitating an expanded comprehension of relevant contexts, phenomena, and individual experiences. Humanitarian workers and OCHA staffers will take part in the research. The study subjects will be chosen using a random selection procedure. Online surveys with both closed- and open-ended questions will be used to compile the data. UN OCHA offers a structure for the handling of information via which all humanitarian actors may contribute to the overall response. This research will enable the UN Office for OCHA better gather, process, analyze, disseminate, store, and retrieve data in the event of a catastrophe or humanitarian crisis.
基金Supported by the National Natural Science Foundation of China(No.21301035)
文摘Two new coordination polymers,[ZnL1]n(1,H2L1 = 5-(4-pyridyl)-methoxyl isophthalic acid) and[Ni(L2)2(H2O)4]n(2,HL2 = 4-(pyridin-4-ylmethoxy)benzolic acid),have been synthesized and characterized by elemental analysis,PXRD,IR spectra,and single-crystal X-ray diffraction.Compound 1 has a three-dimensional framework constructed by 6-bridged L1^2- anions connecting the Zn2(O2C)4 paddlewheel-like units.Compound 2 contains a mononuclear molecular unit,and the central nickel atom adopts a slightly distorted octahedral geometry by two nitrogen atoms from different L2^- ligands and four oxygen atoms from water molecules.These molecular units link each other via four types of O-H…O hydrogen bonds to form an extended three-dimensional(3D) supramolecular network.The thermal and photoluminescent properties of 1 and 2 have also been investigated.
基金Funded by the National Natural Science Foundation of China(No.51272207)
文摘From the perspective of growth units, the growth mechanism of Mg2(OH)2CO3.3H2O whisker is investigated in this paper. Results show that the growth morphology of Mg2(OH)2CO33H2O whisker is consistent with the model of anion coordination polyhedron growth units. The growth solution Raman shift of Mg2(OH)2CO;3H2O was monitored using Raman spectroscopy. The growth units are [Mg-(OH)4]2- and H2COv The growth process of Mg2(OH)2COf3H2O whisker is as follows: growth unit [Mg-(OH)4]2- first incorporates into the larger dimension [Mg-(OH)4]2-, then the [Mg-(OH)4]2-n combines with H2CO3 into a linear skeleton Mg2(OH)2CO3 in the same line. Mg2(OH)2CO3 combines with H2O by hydrogen bonds and ultimately transforms into Mg2(OH)2COf3H2O whisker. Magnesium carbonate whiskers have a layered structure, each of which is made of magnesium, carbon, oxygen, with H2O in between each layer. When skeletons are superimposed within the same plane as a parallelepiped one, they grow into solid cuboid-shaped whiskers. When the parallelepiped skeletons planes combine with each other through the cascading links, they grow into hollow cylindrical whiskers.
基金Funded by the National Natural Science Foundation of China(No.51272207)
文摘The growth habit of the basic magnesium oxysulfate whisker was investigated based on the theoreticalmodelof anion coordination polyhedron growth units.It is found that typicalbasic magnesium oxysulfate whisker growth is consistent with anion tetrahedralcoordination incorporation rules.The growth units of basic magnesium oxysulfate whiskers are [Mg-(OH)_4]^(2-) and HSO_4^-.[Mg-(OH)_4]^(2-) is the favorable growth unit and whisker growth is in the direction of the [Mg-(OH)_4]^(2-) combination.A plurality of [Mg-(OH)_4]^(2-) s combine and become a larger dimensionalgrowth unit in a one-dimensionaldirection.Then HSO_4^- and larger dimensionalgrowth units connect as basic magnesium sulfate whiskers,according to the structuralcharacteristics of the basic magnesium sulfate whisker,which can guide the synthesis of magnesium hydroxide whisker.
基金supported by the National Natural Science Foundation of China (Grant Nos.40776071,40976074)
文摘From the point of growth units, the growth mechanism of hydrotalcite (HT) crystal is investigated in this paper. Results show that the growth morphology of HT is consistent with the model of anion coordination polyhedron growth units. The Raman shift of growth solutions of HT, Cu-HTlc, and Cu-Zn-HTlc are monitored using Raman spectroscopy. In the experiment, the growth units of Mg-Al-hydrotalcite are [Mg-(OH)6]4- and [Al-(OH)6]3-, and the growth units of Cu-Htlc and Cu-Zn-HTlc are [Mg-(OH)6]4- and [Al-(OH)6]3-, respectively. The growth process of hydrotalcite is as follows: growth units first incorpo- rate into metal layers, then metal layers adsorb An- and H2O, and the growth units incorporate into layer compounds according to this rule. Growth units will have different incorporations and growth morphologies caused by different growth surroundings. Furthermore, the reason why Cu-HTlc is difficult to synthesize is also interpreted in this paper.
基金supported by the National Science Foundation of China(No.51073079)the Natural Science Fund of Tianjin,China (No.10JCZDJC22100)the Fundamental Research Funds for the Central Universities
文摘A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 4^(24)·5·6~3 topology. Moreover,the thermal stability and luminescence property of this compound have been investigated.
基金supported by the 111 China Project(Grant No.B16003)the National Natural Science Foundation of China(Grant Nos.11290151,11702022,and 11221202)
文摘As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics(SPH) method is used to model the compressible fluid, the natural coordinate formulation(NCF) and absolute nodal coordinate formulation(ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit(GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.