期刊文献+
共找到2,452篇文章
< 1 2 123 >
每页显示 20 50 100
Using Improved Particle Swarm Optimization Algorithm for Location Problem of Drone Logistics Hub
1
作者 Li Zheng Gang Xu Wenbin Chen 《Computers, Materials & Continua》 SCIE EI 2024年第1期935-957,共23页
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ... Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively. 展开更多
关键词 Drone logistics location problem mathematical model DIVERSITY particle swarm optimization
下载PDF
Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm
2
作者 Danlei Chen Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期244-255,共12页
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature... Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving. 展开更多
关键词 optimal design Process systems particle swarm optimization Simulated annealing Mathematical modeling
下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:6
3
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON Seepage pressure Mutation factor Piezometric level
下载PDF
Power System Aggregate Load Area Modelling by Particle Swarm Optimization 被引量:1
4
作者 Jian-Lin Wei, Ji-Hong Wang, Q. H. Wu, Nan Lu Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK 《International Journal of Automation and computing》 EI 2005年第2期171-178,共8页
This paper presents a new approach for deriving a power system aggregate load area model (ALAM). In this approach, an equivalent area load model is derived to represent the load characters for a particular area load o... This paper presents a new approach for deriving a power system aggregate load area model (ALAM). In this approach, an equivalent area load model is derived to represent the load characters for a particular area load of a power system network. The Particle Swarm Optimization (PSO) method is employed to identify the unknown parameters of the generalised system, ALAM, based on the system measurement directly using a one-step scheme. Simulation studies are carried out for an IEEE 14-Bus power system and an IEEE 57-Bus power system. Simulation results show that the ALAM can represent the area load characters accurately under different operational conditions and at different power system states. 展开更多
关键词 Load modelling power system particle swarm optimization parameter identificaiotn
下载PDF
Lifetime prediction for tantalum capacitors with multiple degradation measures and particle swarm optimization based grey model 被引量:2
5
作者 黄姣英 高成 +1 位作者 崔嵬 梅亮 《Journal of Central South University》 SCIE EI CAS 2012年第5期1302-1310,共9页
A lifetime prediction method for high-reliability tantalum(Ta) capacitors was proposed,based on multiple degradation measures and grey model(GM).For analyzing performance degradation data,a two-parameter model based o... A lifetime prediction method for high-reliability tantalum(Ta) capacitors was proposed,based on multiple degradation measures and grey model(GM).For analyzing performance degradation data,a two-parameter model based on GM was developed.In order to improve the prediction accuracy of the two-parameter model,parameter selection based on particle swarm optimization(PSO) was used,Then,the new PSO-GM(1,2,ω) optimization model was constructed,which was validated experimentally by conducting an accelerated testing on the Ta capacitors.The experiments were conducted at three different stress levels of 85,120,and 145 °C.The results of two experiments were used in estimating the parameters.And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment.The results indicate that the proposed method is valid and accurate. 展开更多
关键词 粒子群优化 钽电容器 性能退化 灰色模型 寿命预测 可靠性估计 验证实验 参数模型
下载PDF
PARTICLE SWARM OPTIMIZATION BASED ON PYRAMID MODEL FOR SATELLITE MODULE LAYOUT 被引量:1
6
作者 Zhang Bao Teng Hongfei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期530-536,共7页
To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against t... To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio. 展开更多
关键词 particle swarm optimization Pyramid model Layout design Satellite module
下载PDF
Global optimization for ducted coaxial-rotors aircraft based on Kriging model and improved particle swarm optimization algorithm 被引量:1
7
作者 杨璐鸿 刘顺安 +1 位作者 张冠宇 王春雪 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1315-1323,共9页
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example an... To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency. 展开更多
关键词 旋翼飞机 整体优化 格模型 粒子群算法 同轴 管道 虚拟样机仿真 PSO算法
下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
8
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization(MOPSO) algorithm for optimization of the hydrological model(HYMOD) is presented in this paper.MOPSO algorithm is used to find non-dominated solutions with ... An application of multi-objective particle swarm optimization(MOPSO) algorithm for optimization of the hydrological model(HYMOD) is presented in this paper.MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash-Sutcliffe efficiency.The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms.MOPSO algorithm surpasses multi-objective shuffled complex evolution metropolis(MOSCEM_UA) algorithm in terms of the two sets' coverage rate.But when we come to Pareto front spacing rate,the non-dominated solutions of MOSCEM_UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40000.In addition,there are obvious conflicts between the two objectives.But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 多客观的粒子群优化(MOPSO ) 水文学模型(HYMOD ) multi-obiective 优化
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
9
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook model Sensitivity Analysis optimization particle swarm INTELLIGENCE (PSO) Ant Colony optimization (ACO) Genetic Algorithm (GA)
下载PDF
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
10
作者 Basad Ali Hussain Al-sarray 《Journal of Mathematics and System Science》 2015年第10期399-410,共12页
关键词 粒子群优化算法 ARMA模型 最大似然函数 模拟实验 估计模型 PSO算法 蒙特卡罗方法 参数估计算法
下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
11
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(PSO) chaos theory cloud model hybrid optimization
下载PDF
Particle swarm optimization and its application to seismic inversion of igneous rocks 被引量:3
12
作者 Yang Haijun Xu Yongzhong +6 位作者 Peng Gengxin Yu Guiping Chen Meng Duan Wensheng Zhu Yongfeng Cui Yongfu Wang Xingjun 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期349-357,共9页
In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inve... In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inversion. Through numerical simulation, we tested the effects of different algorithm parameters and different model parameterization methods on PSO wave impedance inversion, and analyzed the characteristics of PSO method. Under the conclusions drawn from numerical simulation, we propose the scheme of combining a cross-moving strategy based on a divided block model and high-frequency filtering technology for PSO inversion. By analyzing the inversion results of a wedge model of a pitchout coal seam and a coal coking model with igneous rock intrusion, we discuss the vertical and horizontal resolution, stability and reliability of PSO inversion. Based on the actual seismic and logging data from an igneous area, by taking a seismic profile through wells as an example, we discuss the characteristics of three inversion methods, including model-based wave impedance inversion, multi-attribute seismic inversion based on probabilistic neural network(PNN) and wave impedance inversion based on PSO.And we draw the conclusion that the inversion based on PSO method has a better result for this igneous area. 展开更多
关键词 粒子群优化算法 火成岩侵入 地震反演 波阻抗反演 粒子群算法 分块模型 应用 概率神经网络
下载PDF
A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser 被引量:1
13
作者 Y.Zheng J.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期275-284,共10页
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta... A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions. 展开更多
关键词 Multi-objective particle swarm optimization Kriging meta-model Trapezoid index Deepwater composite riser
下载PDF
Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii
14
作者 Yung-Chang Cheng Cheng-Kang Lee 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期963-980,共18页
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspens... This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system. 展开更多
关键词 Speed-dependent nonlinear creep model Quantum-behaved particle swarm optimization Uniform design Wheel rolling radius Hunting stability
下载PDF
Particle Swarm Optimization for Identifying Rainfall-Runoff Relationships
15
作者 Chien-Ming Chou 《Journal of Water Resource and Protection》 2012年第3期115-126,共12页
Rainfall-runoff processes can be considered a single input-output system where the observed rainfall and runoff are inputs and outputs, respectively. Conventional models of these processes cannot simultaneously identi... Rainfall-runoff processes can be considered a single input-output system where the observed rainfall and runoff are inputs and outputs, respectively. Conventional models of these processes cannot simultaneously identify unknown structures of the system and estimate unknown parameters. This study applied a combinational optimization and Particle Swarm Optimization (PSO) for simultaneous identification of system structure and parameters of the rainfall-runoff relationship. Subsystems in proposed model are modeled using combinations of classic models. Classic models are used to transform the system structure identification problem into a combinational optimization and can be selected from those typically used in the hydrological field. A PSO is then applied to select the optimized subsystem model with the best data fit. The parameters are estimated simultaneously. The proposed model is tested in a case study of daily rainfall-runoff for the upstream Kee-Lung River. Comparison of the proposed method with simple linear model (SLM) shows that, in both calibration and validation, the PSO simulates the time of peak arrival more accurately compared to the SLM. Analytical results also confirm that the PSO accurately identifies the system structure and parameters of the rainfall-runoff relationship, which are a useful reference for water resource planning and application. 展开更多
关键词 RAINFALL-RUNOFF System Identification particle swarm optimization CLASSIC models SIMPLE Linear model
下载PDF
A Hybrid Particle Swarm Optimization to Forecast Implied Volatility Risk
16
作者 Kais Tissaoui Sahbi Boubaker +2 位作者 Waleed Saud Alghassab Taha Zaghdoudi Jamel Azibi 《Computers, Materials & Continua》 SCIE EI 2022年第11期4291-4309,共19页
The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a... The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a forecasting perspective.The complex characteristics of implied volatility risk index such as non-linearity structure,time-varying and nonstationarity motivate us to apply a nonlinear polynomial Hammerstein model with known structure and unknown parameters.We use the Hybrid Particle Swarm Optimization(HPSO)tool to identify the model parameters of nonlinear polynomial Hammerstein model.Findings indicate that,following a nonlinear polynomial behaviour cascaded to an autoregressive with exogenous input(ARX)behaviour,the fear index in US financial market is significantly affected by COVID-19-infected cases in the US,COVID-19-infected cases in the world and COVID-19-infected cases in China,respectively.Statistical performance indicators provided by the developed models show that COVID-19-infected cases in the US are particularly powerful in predicting the Cboe volatility index compared to COVID-19-infected cases in the world and China(MAPE(2.1013%);R2(91.78%)and RMSE(0.6363 percentage points)).The proposed approaches have also shown good convergence characteristics and accurate fits of the data. 展开更多
关键词 Forecasting Cboe’s volatility index COVID-19 pandemic nonlinear polynomial hammerstein model hybrid particle swarm optimization
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization
17
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics model Competitive Multi-Objective particle swarm optimization Algorithm (CMOPSO) Multi-Objective optimization
下载PDF
Implementation of Particle Swarm Optimization Algorithm in Matlab Code for Hyperelastic Characterization
18
作者 Talaka Dya Bale Baidi Blaise +1 位作者 Gambo Betchewe Mohamadou Alidou 《World Journal of Mechanics》 2021年第7期146-163,共18页
The purpose of this paper is to demonstrate the applicability of Particle Swarm Optimization algorithm to determine material parameters in incompressible isotropic elastic strain-energy functions using combined tensio... The purpose of this paper is to demonstrate the applicability of Particle Swarm Optimization algorithm to determine material parameters in incompressible isotropic elastic strain-energy functions using combined tension and torsion loading. Simulation of rubber behavior was conducted from the governing equations of the deformation of a cylinder composed of isotropic hyperelastic incompressible materials. Four different forms of strain-energy function were considered based respectively on polynomial, exponential and logarithmic terms to reproduce load force (N) and torque (M) trends using natural rubber experimental data. After highlighting the minimization of the objective function generated in the fitting process, the study revealed that a particle swarm optimization algorithm could be successfully used to identify the best material parameters and characterize the behavior of rubber-like hyperelastic materials. 展开更多
关键词 particle swarm optimization Hyperelastic models Tension-Torsion Test Load Force Torsional Couple
下载PDF
Application of particle swarm optimization algorithm in bellow optimum design
19
作者 YU Ying Zhu Qing-nan +1 位作者 YU Xiao-Chun LI Yong-Sheng 《通讯和计算机(中英文版)》 2007年第7期50-56,共7页
关键词 最优化设计 颗粒群最优化算法 应用 数学模型 间断永续性 全球最优化
下载PDF
A modified back analysis method for deep excavation with multi-objective optimization procedure
20
作者 Chenyang Zhao Le Chen +2 位作者 Pengpeng Ni Wenjun Xia Bin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1373-1387,共15页
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ... Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task. 展开更多
关键词 Multi-objective optimization Back analysis Surrogate model Multi-objective particle swarm optimization(MOPSO) Deep excavation
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部