In this article a variable-domain variational approach to the entitled problem is presented.A pair of comple- mentary variational principles with a variable domain in terms of temperature and heat-streamfunction are f...In this article a variable-domain variational approach to the entitled problem is presented.A pair of comple- mentary variational principles with a variable domain in terms of temperature and heat-streamfunction are first established.Based on them,two methods of solution—generalized Ritz method and variable-domain FEM— both capable of handling problems with unknown boundaries,are suggested.Then,three sample numerical examples have been tested.The computational process is quite stable,and the results are encouraging.This variational approach can be extended straightforwardly to 3-D inverse problems as well as to other problems in mathematical physics.展开更多
In this paper, we study mixed elastico-plasticity problems in which part of the boundary is known, while the other part of the boundary is unknown and is a free boundary. Under certain conditions, this problem can be ...In this paper, we study mixed elastico-plasticity problems in which part of the boundary is known, while the other part of the boundary is unknown and is a free boundary. Under certain conditions, this problem can be transformed into a Riemann-Hilbert boundary value problem for analytic functions and a mixed boundary value problem for complex equations. Using the theory of generalized analytic functions, the solvability of the problem is discussed.展开更多
文摘In this article a variable-domain variational approach to the entitled problem is presented.A pair of comple- mentary variational principles with a variable domain in terms of temperature and heat-streamfunction are first established.Based on them,two methods of solution—generalized Ritz method and variable-domain FEM— both capable of handling problems with unknown boundaries,are suggested.Then,three sample numerical examples have been tested.The computational process is quite stable,and the results are encouraging.This variational approach can be extended straightforwardly to 3-D inverse problems as well as to other problems in mathematical physics.
基金the National Natural Science Foundation of China(No.10471149,10671207)the Postdoctoral Science Foundation of China(No.2005037447)
文摘In this paper, we study mixed elastico-plasticity problems in which part of the boundary is known, while the other part of the boundary is unknown and is a free boundary. Under certain conditions, this problem can be transformed into a Riemann-Hilbert boundary value problem for analytic functions and a mixed boundary value problem for complex equations. Using the theory of generalized analytic functions, the solvability of the problem is discussed.