期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanics Unloading Analysis and Experimentation of a New Type of Parallel Biomimetic Shoulder Complex 被引量:4
1
作者 HOU Yulei LI Zhisen +3 位作者 WANG Yi ZHANG Wenwen ZENG Daxing ZHOU Yulin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期649-658,共10页
The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoul... The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex.A new type biomimetic shoulder complex,which adopts 3-PSS/S(P for prismatic pair,S for spherical pair) spherical parallel mechanism(SPM),is proposed.The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved.Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism.In addition,the prototype mechanism of the shoulder complex is developed,and the force feedback experiment is conducted to verify the static analysis,which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved.The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex,and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex. 展开更多
关键词 biomimetic shoulder complex humanoid robot spherical parallel mechanism carrying capacity mechanics unloading
下载PDF
Computational Model for the Underlying Mechanisms Regulating Bone Loss by Mechanical Unloading and Estrogen Deficiency
2
作者 宫赫 朱东 +1 位作者 张明 张西正 《Tsinghua Science and Technology》 SCIE EI CAS 2010年第5期540-546,共7页
The objective of this paper is to investigate the different effects of disuse and estrogen deficiency on bone loss and the underlying mechanisms.A mechanical-biological factors coupled computational model was built to... The objective of this paper is to investigate the different effects of disuse and estrogen deficiency on bone loss and the underlying mechanisms.A mechanical-biological factors coupled computational model was built to simulate different patterns of bone loss induced in female rats by hind limb unloading,ovariectomy,or both in an animal study.A remodeling analysis was performed on a representative cross section of 6 mm2 of cancellous bone in the distal femoral metaphysis of the rats.The BMU activation frequency,the refilling rate,and the principal compressive strain in the state of mechanical unloading and estrogen deficiency were simulated to interpret the underlying mechanisms.Simulated bone loss patterns due to mechanical unloading,estrogen deficiency,or both all corresponded with the experimental observations.The results show that mechanical unloading and estrogen deficiency cause different bone loss patterns;moreover,mechanical unloading induces a greater degree of bone loss than estrogen deficiency,which can lead to improved treatment and prevention strategies for osteoporosis. 展开更多
关键词 bone loss computational model mechanical unloading estrogen deficiency underlying mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部