期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Energy conversion of rocks in process of unloading confining pressure under different unloading paths 被引量:13
1
作者 赵国彦 戴兵 +1 位作者 董陇军 杨晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1626-1632,共7页
Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy... Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths. 展开更多
关键词 unloading paths axial pressure confining pressure strain energy energy conversion
下载PDF
Influence of excavation schemes on slope stability: A DEM study 被引量:9
2
作者 WANG Zhen-yu GU Dong-ming ZHANG Wen-gang 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1509-1522,共14页
Slope failure due to improper excavation is one of common engineering disasters in China.To explore the failure mechanism of soil slope induced by toe excavation,especially to investigate the influence of excavation u... Slope failure due to improper excavation is one of common engineering disasters in China.To explore the failure mechanism of soil slope induced by toe excavation,especially to investigate the influence of excavation unloading path and rate on slope stability,a numerical slope model was built via particle flow code PFC2 D.The development of crack and strain during excavation were obtained and used to evaluate the deformation characteristics.Furthermore,excavation types representing different unloading paths and rates were compared in terms of crack number and strain level.Results indicate that crack number and strain level induced by horizontal column excavation are much greater than those of vertical column excavation and oblique excavation.The crack number and strain level increase with excavation unloading rate.Besides,the feasibility of taking the average strain of slope surface and the average value of maximum strain along monitoring lines to represent the global deformation characteristics were discussed.This study can provide a theoretical guidance for slope monitoring and preliminary optimal selection of excavation scheme in the design and construction of slope engineering. 展开更多
关键词 Slope toe excavation unloading path unloading rate Strain distribution Slope stability Discrete element method
下载PDF
Coefficients of earth pressure at rest in thick and deep soils 被引量:9
3
作者 TIAN Qiu-hong XU Zhi-wei ZHOU Guo-qing ZHAO Xiao-dong HU Kun 《Mining Science and Technology》 EI CAS 2009年第2期252-255,共4页
The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and f... The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents. 展开更多
关键词 experimental research earth pressure at rest loading and unloading paths thick and deep soils
下载PDF
INFLUENCE OF COMPRESSION-BENDING COUPLING ON THE STABILITY BEHAVIOR OF ANISOTROPIC LAMINATED PANELS
4
作者 黄小清 张红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第1期18-26,共9页
Dynamic-Relaxation Method (DRM) is applied to studying the influence of compression-bending coupling on nonlinear behavior of cylindrically slightly curved panels of unsymmetric laminated composite materials subjected... Dynamic-Relaxation Method (DRM) is applied to studying the influence of compression-bending coupling on nonlinear behavior of cylindrically slightly curved panels of unsymmetric laminated composite materials subjected to uniform uniaxial Compression during loading and unloading. Numerical results are given for cross-ply plates and panels under S4S4 and S4S2 boundary conditions. The results show that the effects of absolute value and the sign of the coupling coefficient on the stability behavior of the panles are significant. 展开更多
关键词 compression-bending coupling laminated panels stability behavior loading and unloading paths dynamic-relaxation method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部