期刊文献+
共找到8,126篇文章
< 1 2 250 >
每页显示 20 50 100
Received Power Based Unmanned Aerial Vehicles (UAVs) Jamming Detection and Nodes Classification Using Machine Learning 被引量:1
1
作者 Waleed Aldosari 《Computers, Materials & Continua》 SCIE EI 2023年第4期1253-1269,共17页
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ... This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks. 展开更多
关键词 Jamming attacks machine learning unmanned aerial vehicle(uav) WSNS
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:2
2
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 unmanned aerial vehicle(uav) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
3
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring Data fusion Terrestrial laser scanning(TLS) unmanned aerial vehicle(uav) Model reconstruction
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
4
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 unmanned aerial vehicle(uav) Uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
Ground target localization of unmanned aerial vehicle based on scene matching
5
作者 ZHANG Yan CHEN Yukun +2 位作者 HUANG He TANG Simi LI Zhi 《High Technology Letters》 EI CAS 2024年第3期231-243,共13页
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ... In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment. 展开更多
关键词 scene matching basemap adjustment feature registration random sample con-sensus(RANSAC) unmanned aerial vehicle(uav)
下载PDF
Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding
6
作者 HONG Weiyuan LI Ziqiu +5 位作者 FENG Xiangqian QIN Jinhua WANG Aidong JIN Shichao WANG Danying CHEN Song 《Rice science》 SCIE CSCD 2024年第5期617-628,I0066-I0070,共17页
Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimat... Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work. 展开更多
关键词 phenological date plant height unmanned aerial vehicle machine learning rice breeding
下载PDF
Secure Transmission Scheme for Blocks in Blockchain-Based Unmanned Aerial Vehicle Communication Systems
7
作者 Ting Chen Shuna Jiang +4 位作者 Xin Fan Jianchuan Xia Xiujuan Zhang Chuanwen Luo Yi Hong 《Computers, Materials & Continua》 SCIE EI 2024年第11期2195-2217,共23页
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is ... In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is also affected by the block length.Therefore,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving UAVs.This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission.In our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source UAV.Under the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length optimization.Then,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization problems.Finally,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems iteratively.The simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain. 展开更多
关键词 unmanned aerial vehicles blockchain finite blocklength block transmission alternating optimization
下载PDF
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
8
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(Quav) reinforcement learning safety constraints uncertain disturbances.
下载PDF
Unmanned Aerial Vehicle Inspection Routing and Scheduling for Engineering Management
9
作者 Lu Zhen Zhiyuan Yang +2 位作者 Gilbert Laporte Wen Yi Tianyi Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期223-239,共17页
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ... Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency. 展开更多
关键词 Engineering management unmanned aerial vehicle Inspection routing and scheduling OPTIMIZATION Mixed-integer linear programming model Variable neighborhood search metaheuristic
下载PDF
Average Secrecy Capacity of the Reconfigurable Intelligent Surface-Assisted Integrated Satellite Unmanned Aerial Vehicle Relay Networks
10
作者 Ping Li Kefeng Guo +2 位作者 Feng Zhou XuelingWang Yuzhen Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1849-1864,共16页
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e... Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings. 展开更多
关键词 Integrated satellite unmanned aerial vehicle relay networks reconfigurable intelligent surface average secrecy capacity(ASC) asymptotic ASC
下载PDF
Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms
11
作者 Siling Feng Yinjie Chen +1 位作者 Mengxing Huang Feng Shu 《Computers, Materials & Continua》 SCIE EI 2023年第5期4341-4355,共15页
Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby ext... Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby extending the lifetime of this energy-constrained device.This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously.In this paper,we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks.It is a practical solution to the problem of marine sensor networks that are located far from shore and have limited power.A corresponding system model is summarized based on the scenario and existing theoretical works.The minimum throughputmaximizing object is then formulated as an optimization problem.As swarm intelligence algorithms are utilized effectively in numerous fields,this paper chose to solve the formed optimization problem using the Harris Hawks Optimization and Whale Optimization Algorithms.This paper introduces a method for translating multi-decisions into a row vector in order to adapt swarm intelligence algorithms to the problem,as joint time and energy optimization have two sets of variables.The proposed method performs well in terms of stability and duration.Finally,performance is evaluated through numerical experiments.Simulation results demonstrate that the proposed method performs admirably in the given scenario. 展开更多
关键词 Resource allocation unmanned aerial vehicles harris hawks optimization whale optimization algorithm
下载PDF
Optimal Deep Learning Enabled Communication System for Unmanned Aerial Vehicles
12
作者 Anwer Mustafa Hilal Jaber S.Alzahrani +5 位作者 Dalia H.Elkamchouchi Majdy M.Eltahir Ahmed S.Almasoud Abdelwahed Motwakel Abu Sarwar Zamani Ishfaq Yaseen 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期955-969,共15页
Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becom... Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becomes essential to optimally utilize the resources and effective communication among them and base station(BS).Therefore,clustering can be employed as an effective way of accomplishing smart communication systems among multiple UAVs.In this aspect,this paper presents a group teaching optimization algorithm with deep learning enabled smart communication system(GTOADL-SCS)technique for UAV networks.The proposed GTOADL-SCS model encompasses a two stage process namely clustering and classification.At the initial stage,the GTOADL-SCS model includes a GTOA based clustering scheme to elect cluster heads(CHs)and organize clusters.Besides,the GTOADL-SCS model develops a fitness function containing three input parameters as residual energy of UAVs,average neighoring distance,and UAV degree.For classification process,the GTOADLSCS model applies pre-trained densely connected network(DenseNet201)feature extractor with gated recurrent unit(GRU)classifier.For ensuring the enhanced performance of the GTOADL-SCS model,a widespread simulation analysis is performed and the comparative study reported the significant outcomes over the existing approaches with maximum packet delivery ratio(PDR)of 92.60%. 展开更多
关键词 unmanned aerial vehicles energy efficiency smart communication system deep learning
下载PDF
3D Path Optimisation of Unmanned Aerial Vehicles Using Q Learning-Controlled GWO-AOA
13
作者 K.Sreelakshmy Himanshu Gupta +3 位作者 Om Prakash Verma Kapil Kumar Abdelhamied A.Ateya Naglaa F.Soliman 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2483-2503,共21页
Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedi... Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedious tasks in hazardous environments.Their increased demand created the requirement for enabling the UAVs to traverse independently through the Three Dimensional(3D)flight environment consisting of various obstacles which have been efficiently addressed by metaheuristics in past literature.However,not a single optimization algorithms can solve all kind of optimization problem effectively.Therefore,there is dire need to integrate metaheuristic for general acceptability.To address this issue,in this paper,a novel reinforcement learning controlled Grey Wolf Optimisation-Archimedes Optimisation Algorithm(QGA)has been exhaustively introduced and exhaustively validated firstly on 22 benchmark functions and then,utilized to obtain the optimum flyable path without collision for UAVs in three dimensional environment.The performance of the developed QGA has been compared against the various metaheuristics.The simulation experimental results reveal that the QGA algorithm acquire a feasible and effective flyable path more efficiently in complicated environment. 展开更多
关键词 Archimedes optimisation algorithm grey wolf optimisation path planning reinforcement learning unmanned aerial vehicles
下载PDF
Rice Bacterial Infection Detection Using Ensemble Technique on Unmanned Aerial Vehicles Images
14
作者 Sathit Prasomphan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期991-1007,共17页
Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which ... Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which could have been incorrect.Plant inspection can determine which plants reflect the quantity of green light and near-infrared using infrared light,both visible and eye using a drone.The goal of this study was to create algorithms for assessing bacterial infections in rice using images from unmanned aerial vehicles(UAVs)with an ensemble classification technique.Convolution neural networks in unmanned aerial vehi-cles image were used.To convey this interest,the rice’s health and bacterial infec-tion inside the photo were detected.The project entailed using pictures to identify bacterial illnesses in rice.The shape and distinct characteristics of each infection were observed.Rice symptoms were defined using machine learning and image processing techniques.Two steps of a convolution neural network based on an image from a UAV were used in this study to determine whether this area will be affected by bacteria.The proposed algorithms can be utilized to classify the types of rice deceases with an accuracy rate of 89.84 percent. 展开更多
关键词 Bacterial infection detection adaptive deep learning unmanned aerial vehicles image retrieval
下载PDF
A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles(UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China 被引量:3
15
作者 Xiao Xiao Jiang Wang +1 位作者 Jun Huang Binlong Ye 《Earth and Planetary Physics》 2018年第5期398-405,共8页
Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry ... Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan. 展开更多
关键词 unmanned aerial vehicle(uav) structure from motion yardang aeolian research comparative planetary geology
下载PDF
Contour Based Path Planning with B-Spline Trajectory Generation for Unmanned Aerial Vehicles (UAVs) over Hostile Terrain
16
作者 Ee-May Kan Meng-Hiot Lim +2 位作者 Swee-Ping Yeo Jiun-Sien Ho Zhenhai Shao 《Journal of Intelligent Learning Systems and Applications》 2011年第3期122-130,共9页
This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to est... This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms. 展开更多
关键词 unmanned aerial vehicles (uavs) Radar Path Planning B-SPLINES
下载PDF
基于DPBBO算法的智慧云仓UAV盘库作业优化
17
作者 张富强 温博强 惠记庄 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期921-929,共9页
针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与... 针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。 展开更多
关键词 智慧云仓 盘库作业 无人机 差分迁移-分段变异生物地理学优化算法 射频识别技术 工业物联网
下载PDF
基于多密度流聚类的UAV-NOMA用户分簇与功率分配算法
18
作者 杨青青 韩卓廷 +1 位作者 彭艺 吴桐 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期86-97,共12页
针对无人机(Unmanned Aerial Vehicle,UAV)辅助非正交多址(Non-Orthogonal Multiple Access,NOMA)下行通信系统,提出了最大化和速率的用户动态分簇与功率分配方案.考虑用户服务质量与UAV位置约束,建立了和速率最大化的优化问题.由于目... 针对无人机(Unmanned Aerial Vehicle,UAV)辅助非正交多址(Non-Orthogonal Multiple Access,NOMA)下行通信系统,提出了最大化和速率的用户动态分簇与功率分配方案.考虑用户服务质量与UAV位置约束,建立了和速率最大化的优化问题.由于目标函数的非凸性,将原问题解耦为三个子问题,分别优化UAV位置部署与用户连接、用户动态分簇、功率分配以提高系统性能.首先,基于K-means算法设计了UAV位置部署与用户连接方案,以减小路损为目的确定UAV最佳部署位置,同时选择其服务的最优用户群;其次,改进多密度流聚类(Multi-Density Stream Clustering, MDSC)算法,提出了单UAV下用户静态与动态分簇方案,静态分簇方案可自适应平衡簇数与簇用户数,并获得较大的簇内用户信道增益差异,动态分簇方案则针对用户移动属性,制定了即时更新策略;最后,使用分式规划(Fractional Programming,FP)二次变换的方法,引入辅助变量将原非凸问题变换为凸问题,交替优化辅助变量与功率分配因子,获得原非凸问题的次优解.仿真结果表明,与其他算法相比,本文分簇方案能获得更大的簇内信道差异与更小的簇内用户数标准差,同时用户系统性能也获得了显著提升. 展开更多
关键词 无人机 非正交多址 位置部署 动态分簇 功率分配
下载PDF
面向UAV辅助的WSN信息年龄优化算法
19
作者 王茜竹 卢诗萱 吴广富 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2024年第5期148-155,共8页
提出了一种综合传感器能源供给、数据传输时效性和移动用户需求的系统平均信息年龄(AoI)优化算法。首先,采用无人机(UAV)辅助WSN来保障传感器的能量收集和数据传输。其次,引入AoI作为衡量指标,联合优化多设备调度、发射功率和UAV轨迹,... 提出了一种综合传感器能源供给、数据传输时效性和移动用户需求的系统平均信息年龄(AoI)优化算法。首先,采用无人机(UAV)辅助WSN来保障传感器的能量收集和数据传输。其次,引入AoI作为衡量指标,联合优化多设备调度、发射功率和UAV轨迹,建立了以最小化传感器的平均AoI为目标的非凸优化问题。然后,通过约束松弛、变量替换和连续凸逼近等方法,将非凸问题转化为凸问题,并设计了一种迭代式的平均AoI最小化算法。仿真结果表明:该算法在满足移动用户体验的同时有效提升了传感器数据新鲜度。 展开更多
关键词 无线传感器网络 无人机 信息年龄 能量收集
下载PDF
一种基于IRS和UAV辅助通信系统分析
20
作者 吴昊 张延年 柴永生 《实验室研究与探索》 CAS 北大核心 2024年第9期72-77,共6页
为提升智能反射面(IRS)和无人机(UAV)辅助混合通信系统的数据传输速率,提出一种优化用户速率方案。该方案考虑了全双工UAV(FD-UAV)辅助传输模式,IRS辅助传输模式和IRS、FD-UAV辅助混合传输模式(IRS-FD-UAV)。建立联合IRS被动波束形成相... 为提升智能反射面(IRS)和无人机(UAV)辅助混合通信系统的数据传输速率,提出一种优化用户速率方案。该方案考虑了全双工UAV(FD-UAV)辅助传输模式,IRS辅助传输模式和IRS、FD-UAV辅助混合传输模式(IRS-FD-UAV)。建立联合IRS被动波束形成相位(PBP)和UAV/IRS位置的最大化用户速率的目标问题。考虑目标问题的非凸性,利用块坐标下降法(BCD)将原目标问题分解成2个子问题,分别利用黎曼共轭梯度法和交替求解法求解。性能分析表明,相比于FD-UAV和IRS辅助传输模式,IRS-FD-UAV辅助传输模式具有较高的传输速率。 展开更多
关键词 智能反射面 无人机 非正交多址接入 被动波束形成相位 交替求解法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部