The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader th...The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilienc...As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.展开更多
Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes ...Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm(R_YOLO).The algorithm incorporates the Efficient Multi-Scale Attention mechanism(EMA),the efficient Reparameterized Generalized-feature extraction module(CSPStage),the small target detection header,the Repulsion Loss function,and the context aggregation block(CABlock),which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference.The algorithm is validated in detail on two vessel datasets.The comprehensive experimental results demonstrate that,in the infrared dataset,the YOLOv8s algorithm exhibits improvements in various performance metrics.Specifically,compared to the baseline algorithm,there is a 3.1%increase in mean average precision at a threshold of 0.5(mAP(0.5)),a 5.4%increase in recall rate,and a 2.2%increase in mAP(0.5:0.95).Simultaneously,while less than 5 times parameters,the mAP(0.5)and frames per second(FPS)exhibit an increase of 1.7%and more than 3 times,respectively,compared to the CAA_YOLO algorithm.Finally,the evaluation indexes on the visible light data set have shown an average improvement of 4.5%.展开更多
Many efforts have been devoted to efficient task scheduling in Multi-Unmanned Aerial Vehicle(UAV)edge computing.However,the heterogeneity of UAV computation resource,and the task re-allocating between UAVs have not be...Many efforts have been devoted to efficient task scheduling in Multi-Unmanned Aerial Vehicle(UAV)edge computing.However,the heterogeneity of UAV computation resource,and the task re-allocating between UAVs have not been fully considered yet.Moreover,most existing works neglect the fact that a task can only be executed on the UAV equipped with its desired service function(SF).In this backdrop,this paper formulates the task scheduling problem as a multi-objective task scheduling problem,which aims at maximizing the task execution success ratio while minimizing the average weighted sum of all tasks’completion time and energy consumption.Optimizing three coupled goals in a realtime manner with the dynamic arrival of tasks hinders us from adopting existing methods,like machine learning-based solutions that require a long training time and tremendous pre-knowledge about the task arrival process,or heuristic-based ones that usually incur a long decision-making time.To tackle this problem in a distributed manner,we establish a matching theory framework,in which three conflicting goals are treated as the preferences of tasks,SFs and UAVs.Then,a Distributed Matching Theory-based Re-allocating(DiMaToRe)algorithm is put forward.We formally proved that a stable matching can be achieved by our proposal.Extensive simulation results show that Di Ma To Re algorithm outperforms benchmark algorithms under diverse parameter settings and has good robustness.展开更多
Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimat...Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work.展开更多
In the context of multiple-target tracking and surveillance applications,this paper investigates the challenge of determining the optimal positioning of a single autonomous aerial vehicle or agent equipped with multip...In the context of multiple-target tracking and surveillance applications,this paper investigates the challenge of determining the optimal positioning of a single autonomous aerial vehicle or agent equipped with multiple independently-steerable zooming cameras to effectively monitor a set of targets of interest.Each camera is dedicated to tracking a specific target or cluster of targets.The key innovation of this study,in comparison to existing approaches,lies in incorporating the zooming factor for the onboard cameras into the optimization problem.This enhancement offers greater flexibility during mission execution by allowing the autonomous agent to adjust the focal lengths of the onboard cameras,in exchange for varying real-world distances to the corresponding targets,thereby providing additional degrees of freedom to the optimization problem.The proposed optimization framework aims to strike a balance among various factors,including distance to the targets,verticality of viewpoints,and the required focal length for each camera.The primary focus of this paper is to establish the theoretical groundwork for addressing the non-convex nature of the optimization problem arising from these considerations.To this end,we develop an original convex approximation strategy.The paper also includes simulations of diverse scenarios,featuring varying numbers of onboard tracking cameras and target motion profiles,to validate the effectiveness of the proposed approach.展开更多
In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)ca...In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.展开更多
This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The pr...This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target.展开更多
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu...Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.展开更多
Unbalanced traffic distribution in cellular networks results in congestion and degrades spectrum efficiency.To tackle this problem,we propose an Unmanned Aerial Vehicle(UAV)-assisted wireless network in which the UAV ...Unbalanced traffic distribution in cellular networks results in congestion and degrades spectrum efficiency.To tackle this problem,we propose an Unmanned Aerial Vehicle(UAV)-assisted wireless network in which the UAV acts as an aerial relay to divert some traffic from the overloaded cell to its adjacent underloaded cell.To fully exploit its potential,we jointly optimize the UAV position,user association,spectrum allocation,and power allocation to maximize the sum-log-rate of all users in two adjacent cells.To tackle the complicated joint optimization problem,we first design a genetic-based algorithm to optimize the UAV position.Then,we simplify the problem by theoretical analysis and devise a low-complexity algorithm according to the branch-and-bound method,so as to obtain the optimal user association and spectrum allocation schemes.We further propose an iterative power allocation algorithm based on the sequential convex approximation theory.The simulation results indicate that the proposed UAV-assisted wireless network is superior to the terrestrial network in both utility and throughput,and the proposed algorithms can substantially improve the network performance in comparison with the other schemes.展开更多
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st...Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili...This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.展开更多
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig...When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%.展开更多
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金the FederalMinistry of Education and Research of Germany under Grant Numbers 16ES1131 and 16ES1128K.
文摘The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
基金This work was supported by Ph.D.Intelligent Innovation Foundation Project(201-CXCY-A01-08-19-01)Science and Technology on Information System Engineering Laboratory(05202007).
文摘As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.
文摘Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm(R_YOLO).The algorithm incorporates the Efficient Multi-Scale Attention mechanism(EMA),the efficient Reparameterized Generalized-feature extraction module(CSPStage),the small target detection header,the Repulsion Loss function,and the context aggregation block(CABlock),which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference.The algorithm is validated in detail on two vessel datasets.The comprehensive experimental results demonstrate that,in the infrared dataset,the YOLOv8s algorithm exhibits improvements in various performance metrics.Specifically,compared to the baseline algorithm,there is a 3.1%increase in mean average precision at a threshold of 0.5(mAP(0.5)),a 5.4%increase in recall rate,and a 2.2%increase in mAP(0.5:0.95).Simultaneously,while less than 5 times parameters,the mAP(0.5)and frames per second(FPS)exhibit an increase of 1.7%and more than 3 times,respectively,compared to the CAA_YOLO algorithm.Finally,the evaluation indexes on the visible light data set have shown an average improvement of 4.5%.
基金supported by the National Natural Science Foundation of China under Grant 62171465。
文摘Many efforts have been devoted to efficient task scheduling in Multi-Unmanned Aerial Vehicle(UAV)edge computing.However,the heterogeneity of UAV computation resource,and the task re-allocating between UAVs have not been fully considered yet.Moreover,most existing works neglect the fact that a task can only be executed on the UAV equipped with its desired service function(SF).In this backdrop,this paper formulates the task scheduling problem as a multi-objective task scheduling problem,which aims at maximizing the task execution success ratio while minimizing the average weighted sum of all tasks’completion time and energy consumption.Optimizing three coupled goals in a realtime manner with the dynamic arrival of tasks hinders us from adopting existing methods,like machine learning-based solutions that require a long training time and tremendous pre-knowledge about the task arrival process,or heuristic-based ones that usually incur a long decision-making time.To tackle this problem in a distributed manner,we establish a matching theory framework,in which three conflicting goals are treated as the preferences of tasks,SFs and UAVs.Then,a Distributed Matching Theory-based Re-allocating(DiMaToRe)algorithm is put forward.We formally proved that a stable matching can be achieved by our proposal.Extensive simulation results show that Di Ma To Re algorithm outperforms benchmark algorithms under diverse parameter settings and has good robustness.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFD2300700)the Open Project Program of the State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute (Grant No.2023ZZKT20402)+1 种基金the Agricultural Science and Technology Innovation Program, the Central Public-Interest Scientific Institution Basal Research Fund, China (Grant No.CPSIBRF-CNRRI-202119)the Zhejiang ‘Ten Thousand Talents’ Plan Science and Technology Innovation Leading Talent Project, China (Grant No.2020R52035)。
文摘Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work.
基金supported by grants PID2022-142946NA-I00 and PID2022-141159OB-I00funded by MICIU/AEI/10.13039/501100011033ERDF/EU
文摘In the context of multiple-target tracking and surveillance applications,this paper investigates the challenge of determining the optimal positioning of a single autonomous aerial vehicle or agent equipped with multiple independently-steerable zooming cameras to effectively monitor a set of targets of interest.Each camera is dedicated to tracking a specific target or cluster of targets.The key innovation of this study,in comparison to existing approaches,lies in incorporating the zooming factor for the onboard cameras into the optimization problem.This enhancement offers greater flexibility during mission execution by allowing the autonomous agent to adjust the focal lengths of the onboard cameras,in exchange for varying real-world distances to the corresponding targets,thereby providing additional degrees of freedom to the optimization problem.The proposed optimization framework aims to strike a balance among various factors,including distance to the targets,verticality of viewpoints,and the required focal length for each camera.The primary focus of this paper is to establish the theoretical groundwork for addressing the non-convex nature of the optimization problem arising from these considerations.To this end,we develop an original convex approximation strategy.The paper also includes simulations of diverse scenarios,featuring varying numbers of onboard tracking cameras and target motion profiles,to validate the effectiveness of the proposed approach.
基金supported in part by the National Natural Science Foundation of China (Nos.U22A2002, and 62071234)the Hainan Province Science and Technology Special Fund (ZDKJ2021022)+1 种基金the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008the Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
文摘In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.
基金supported in part by the National Key Research and Development Program of China(2021ZD0114503,2022YFB4701800,and 2021YFB1714700)the National Natural Science Foundation of China(62273098,62027810,61971071,62133005,62273138,and 62103140)+9 种基金the Major Research Plan of the National Natural Science Foundation of China(92148204)the Newton International Fellowships 2022 funded by the Royal Society,UK(NIF\R1\221089)Hunan Leading Talent of Technological Innovation(2022RC3063)Hunan Science Fund for Distinguished Young Scholars(2021JJ10025)the Hunan Key Research and Development Program(2021GK4011 and 2022GK2011)the Changsha Science and Technology Major Project(kh2003026)the Natural Science Foundation of Hunan Province(2021JJ20029 and 2021JJ40124)the Science and Technology Innovation Program of Hunan Province(2021RC3060)the Joint Open Foundation of the State Key Laboratory of Robotics(2021-KF-22-17)the China University Industry-University-Research Innovation Fund(2020HYA06006).
文摘This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target.
文摘Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807003in part by the National Natural Science Foundation of China under Grants 61901381,62171385,and 61901378+3 种基金in part by the Aeronautical Science Foundation of China under Grant 2020z073053004in part by the Foundation of the State Key Laboratory of Integrated Services Networks of Xidian University under Grant ISN21-06in part by the Key Research Program and Industrial Innovation Chain Project of Shaanxi Province under Grant 2019ZDLGY07-10in part by the Natural Science Fundamental Research Program of Shaanxi Province under Grant 2021JM-069.
文摘Unbalanced traffic distribution in cellular networks results in congestion and degrades spectrum efficiency.To tackle this problem,we propose an Unmanned Aerial Vehicle(UAV)-assisted wireless network in which the UAV acts as an aerial relay to divert some traffic from the overloaded cell to its adjacent underloaded cell.To fully exploit its potential,we jointly optimize the UAV position,user association,spectrum allocation,and power allocation to maximize the sum-log-rate of all users in two adjacent cells.To tackle the complicated joint optimization problem,we first design a genetic-based algorithm to optimize the UAV position.Then,we simplify the problem by theoretical analysis and devise a low-complexity algorithm according to the branch-and-bound method,so as to obtain the optimal user association and spectrum allocation schemes.We further propose an iterative power allocation algorithm based on the sequential convex approximation theory.The simulation results indicate that the proposed UAV-assisted wireless network is superior to the terrestrial network in both utility and throughput,and the proposed algorithms can substantially improve the network performance in comparison with the other schemes.
基金supported by the National Natural Science Foundation of China(Nos.52225402 and U1910206).
文摘Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
基金supported by the National Key Research and Development Program under Grant 2022YFB3303702the Key Program of National Natural Science Foundation of China under Grant 61931001+1 种基金supported by the National Natural Science Foundation of China under Grant No.62203368the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1440。
文摘This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.
基金supported by the National Natural Science Foundation of China(52174154).
文摘When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%.
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.