An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the...An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.展开更多
This paper studies a robust fault compensation and vibration suppression problem of flexible hypersonic vehicles.The controlled plant is represented by a cascade system composed of a nonlinear Ordinary Differential Eq...This paper studies a robust fault compensation and vibration suppression problem of flexible hypersonic vehicles.The controlled plant is represented by a cascade system composed of a nonlinear Ordinary Differential Equation(ODE)and an Euler-Bernoulli Beam Equation(EBBE),in which the vibration dynamics is coupled with the rigid dynamics and suffers from distributed faults.A state differential transformation is introduced to transfer distributed faults to an EBBE boundary and a longitudinal dynamics is refined by utilizing T-S fuzzy IF-THEN rules.A novel T-S fuzzy based fault-tolerant control algorithm is developed and related stability conditions are established.The robust exponential stability and well-posedness are proved by using the modified l_(0)-semigroup based Lyapunov direct approach.A simulation study on the longitudinal dynamics of flexible hypersonic vehicles effectively verifies the validity of the developed theoretical results.展开更多
To improve transportation capacity,dual overhead crane systems(DOCSs)are playing an increasingly important role in the transportation of large/heavy cargos and containers.Unfortunately,when trying to deal with the con...To improve transportation capacity,dual overhead crane systems(DOCSs)are playing an increasingly important role in the transportation of large/heavy cargos and containers.Unfortunately,when trying to deal with the control problem,current methods fail to fully consider such factors as external disturbances,input dead zones,parameter uncertainties,and other unmodeled dynamics that DOCSs usually suffer from.As a result,dramatic degradation is caused in the control performance,which badly hinders the practical applications of DOCSs.Motivated by this fact,this paper designs a neural network-based adaptive sliding mode control(SMC)method for DOCS to solve the aforementioned issues,which achieves satisfactory control performance for both actuated and underactuated state variables,even in the presence of matched and mismatched disturbances.The asymptotic stability of the desired equilibrium point is proved with rigorous Lyapunov-based analysis.Finally,extensive hardware experimental results are collected to verify the efficiency and robustness of the proposed method.展开更多
Tunable micro-electro-mechanical systems(MEMS)capacitors as the fundamental parts are embedded in MEMS AC voltage reference sources(VRS).Being concerned with the accuracy of the output voltage in the reference sources...Tunable micro-electro-mechanical systems(MEMS)capacitors as the fundamental parts are embedded in MEMS AC voltage reference sources(VRS).Being concerned with the accuracy of the output voltage in the reference sources,it gets important to address uncertainties in the physical parameters of the MEMS capacitor.The uncertainties have the great inevitable potentiality of bringing about output voltage perturbation.The output deterioration is more remarkable when the uncertainties are accompanied by disturbance and noise.Manufacturers have been making great attempts to make the MEMS adjustable capacitor with desired rigorous physical characteristics.They have also tried to mitigate physical parameter veracity.However,ambiguity in the values of the parameters inescapably occurs in fabrication procedures since the micro-machining process might itself suffer from uncertainties.Employing a proportional integral(PI)adaptive sliding mode controller(ASMC),both terms of matched and unmatched uncertainties as well as the disturbance,are addressed in this work for the MEMS AC VRS so that a strict voltage is stabilized while the system is simultaneously subjected into uncertainties and exogenous disturbance.Cross-talk,some inertial forces,and electrostatic coercions may appear as matched and unmatched disturbances.Alteration in stiffness and damping coefficients might also take place as matched uncertainties due to variations in the fabrication process or even working environment.The simulation results in the paper are persuasive and the controller design has shown a satisfactory tracking performance.展开更多
The finite-time convergence problem of an nth nonlinear system with unmatched disturbance is primarily studied in this paper. During the recursive procedure, a new finite-timecontroller is designed and proven by addin...The finite-time convergence problem of an nth nonlinear system with unmatched disturbance is primarily studied in this paper. During the recursive procedure, a new finite-timecontroller is designed and proven by adding a sign function and a power integrator. Meanwhile, a C1 positive definite and proper Lyapunov function, which satisfies the finite-timeLyapunov stability law, is designed. Finally, the designed finite-time controller is appliedto some examples and an application of integrated guidance and control system to testand verify its advantage and practicability.展开更多
Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and contro...Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme.展开更多
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order t...In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.展开更多
A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the p...A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.展开更多
Small area estimation (SAE) tackles the problem of providing reliable estimates for small areas, i.e., subsets of the population for which sample information is not sufficient to warrant the use of a direct estimator....Small area estimation (SAE) tackles the problem of providing reliable estimates for small areas, i.e., subsets of the population for which sample information is not sufficient to warrant the use of a direct estimator. Hierarchical Bayesian approach to SAE problems offers several advantages over traditional SAE models including the ability of appropriately accounting for the type of surveyed variable. In this paper, a number of model specifications for estimating small area counts are discussed and their relative merits are illustrated. We conducted a simulation study by reproducing in a simplified form the Italian Labour Force Survey and taking the Local Labor Markets as target areas. Simulated data were generated by assuming population characteristics of interest as well as survey sampling design as known. In one set of experiments, numbers of employment/unemployment from census data were utilized, in others population characteristics were varied. Results show persistent model failures for some standard Fay-Herriot specifications and for generalized linear Poisson models with (log-)normal sampling stage, whilst either unmatched or nonnormal sampling stage models get the best performance in terms of bias, accuracy and reliability. Though, the study also found that any model noticeably improves on its performance by letting sampling variances be stochastically determined rather than assumed as known as is the general practice. Moreover, we address the issue of model determination to point out limits and possible deceptions of commonly used criteria for model selection and checking in SAE context.展开更多
"There is a beauty in the North, matchless and unmatched; one glance from her felled a city,another glance felled a kingdom"goes "The BeautySong,"a famous Han dynasty (206 BCE -220CE)ballad compose..."There is a beauty in the North, matchless and unmatched; one glance from her felled a city,another glance felled a kingdom"goes "The BeautySong,"a famous Han dynasty (206 BCE -220CE)ballad composed by court musician Li Yannian in the second century BCE.展开更多
文摘An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.
基金This work was supported by the National Natural Science Foundation of China(Nos.62203002 and 62203148)Natural Science Foundation of Anhui Province,China(Nos.2208085QF204 and 2208085QF203)+1 种基金the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System,China(No.2022A0001)the Fundamental Research Funds for the Central Universities,China(No.JZ2022HGTA0346).
文摘This paper studies a robust fault compensation and vibration suppression problem of flexible hypersonic vehicles.The controlled plant is represented by a cascade system composed of a nonlinear Ordinary Differential Equation(ODE)and an Euler-Bernoulli Beam Equation(EBBE),in which the vibration dynamics is coupled with the rigid dynamics and suffers from distributed faults.A state differential transformation is introduced to transfer distributed faults to an EBBE boundary and a longitudinal dynamics is refined by utilizing T-S fuzzy IF-THEN rules.A novel T-S fuzzy based fault-tolerant control algorithm is developed and related stability conditions are established.The robust exponential stability and well-posedness are proved by using the modified l_(0)-semigroup based Lyapunov direct approach.A simulation study on the longitudinal dynamics of flexible hypersonic vehicles effectively verifies the validity of the developed theoretical results.
基金This work is supported by the National Natural Science Foundation of China under Grant 61873132,and the Opening Project of Guangdong Provincial Key Lab of Robotics and Intelligent System.
文摘To improve transportation capacity,dual overhead crane systems(DOCSs)are playing an increasingly important role in the transportation of large/heavy cargos and containers.Unfortunately,when trying to deal with the control problem,current methods fail to fully consider such factors as external disturbances,input dead zones,parameter uncertainties,and other unmodeled dynamics that DOCSs usually suffer from.As a result,dramatic degradation is caused in the control performance,which badly hinders the practical applications of DOCSs.Motivated by this fact,this paper designs a neural network-based adaptive sliding mode control(SMC)method for DOCS to solve the aforementioned issues,which achieves satisfactory control performance for both actuated and underactuated state variables,even in the presence of matched and mismatched disturbances.The asymptotic stability of the desired equilibrium point is proved with rigorous Lyapunov-based analysis.Finally,extensive hardware experimental results are collected to verify the efficiency and robustness of the proposed method.
文摘Tunable micro-electro-mechanical systems(MEMS)capacitors as the fundamental parts are embedded in MEMS AC voltage reference sources(VRS).Being concerned with the accuracy of the output voltage in the reference sources,it gets important to address uncertainties in the physical parameters of the MEMS capacitor.The uncertainties have the great inevitable potentiality of bringing about output voltage perturbation.The output deterioration is more remarkable when the uncertainties are accompanied by disturbance and noise.Manufacturers have been making great attempts to make the MEMS adjustable capacitor with desired rigorous physical characteristics.They have also tried to mitigate physical parameter veracity.However,ambiguity in the values of the parameters inescapably occurs in fabrication procedures since the micro-machining process might itself suffer from uncertainties.Employing a proportional integral(PI)adaptive sliding mode controller(ASMC),both terms of matched and unmatched uncertainties as well as the disturbance,are addressed in this work for the MEMS AC VRS so that a strict voltage is stabilized while the system is simultaneously subjected into uncertainties and exogenous disturbance.Cross-talk,some inertial forces,and electrostatic coercions may appear as matched and unmatched disturbances.Alteration in stiffness and damping coefficients might also take place as matched uncertainties due to variations in the fabrication process or even working environment.The simulation results in the paper are persuasive and the controller design has shown a satisfactory tracking performance.
文摘The finite-time convergence problem of an nth nonlinear system with unmatched disturbance is primarily studied in this paper. During the recursive procedure, a new finite-timecontroller is designed and proven by adding a sign function and a power integrator. Meanwhile, a C1 positive definite and proper Lyapunov function, which satisfies the finite-timeLyapunov stability law, is designed. Finally, the designed finite-time controller is appliedto some examples and an application of integrated guidance and control system to testand verify its advantage and practicability.
基金supported by National Natural Science Foundation of China (No. 60710002, No. 60974044)
文摘Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme.
基金Supported by the National Natural Science Foundation of China under Grant No.60974136
文摘In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
基金the National Natural Science Foundation ofChina (60974136)
文摘A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.
文摘Small area estimation (SAE) tackles the problem of providing reliable estimates for small areas, i.e., subsets of the population for which sample information is not sufficient to warrant the use of a direct estimator. Hierarchical Bayesian approach to SAE problems offers several advantages over traditional SAE models including the ability of appropriately accounting for the type of surveyed variable. In this paper, a number of model specifications for estimating small area counts are discussed and their relative merits are illustrated. We conducted a simulation study by reproducing in a simplified form the Italian Labour Force Survey and taking the Local Labor Markets as target areas. Simulated data were generated by assuming population characteristics of interest as well as survey sampling design as known. In one set of experiments, numbers of employment/unemployment from census data were utilized, in others population characteristics were varied. Results show persistent model failures for some standard Fay-Herriot specifications and for generalized linear Poisson models with (log-)normal sampling stage, whilst either unmatched or nonnormal sampling stage models get the best performance in terms of bias, accuracy and reliability. Though, the study also found that any model noticeably improves on its performance by letting sampling variances be stochastically determined rather than assumed as known as is the general practice. Moreover, we address the issue of model determination to point out limits and possible deceptions of commonly used criteria for model selection and checking in SAE context.
文摘"There is a beauty in the North, matchless and unmatched; one glance from her felled a city,another glance felled a kingdom"goes "The BeautySong,"a famous Han dynasty (206 BCE -220CE)ballad composed by court musician Li Yannian in the second century BCE.