We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.Th...We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.The method is based on observing at the output of a Michelson interferometer the visibilities(contrasts) of the intensity and polarization-state modulations expressed in terms of the Stokes parameters. The results are in good agreement with those deduced directly from the source spectra. The measurements are repeated after passing the beams through a linear polarizer so as to elucidate the role of polarization in electromagnetic coherence. While the polarizer varies the equal-time degree of coherence consistently with the theoretical predictions and alters the inner structure of the coherence matrix, the coherence time remains almost unchanged when the light varies from unpolarized to polarized. The results are important in the areas of applications dealing with physical optics and electromagnetic interference.展开更多
文摘We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.The method is based on observing at the output of a Michelson interferometer the visibilities(contrasts) of the intensity and polarization-state modulations expressed in terms of the Stokes parameters. The results are in good agreement with those deduced directly from the source spectra. The measurements are repeated after passing the beams through a linear polarizer so as to elucidate the role of polarization in electromagnetic coherence. While the polarizer varies the equal-time degree of coherence consistently with the theoretical predictions and alters the inner structure of the coherence matrix, the coherence time remains almost unchanged when the light varies from unpolarized to polarized. The results are important in the areas of applications dealing with physical optics and electromagnetic interference.