在地点推荐应用中,传统的协同过滤推荐算法由于签到数据稀疏导致推荐效果不佳。为提高推荐效果并克服传统协同过滤推荐算法受到热门地点影响的不足,提出一种新的地点推荐算法。将签到地点转换为向量,通过向量的余弦相似性计算签到地点...在地点推荐应用中,传统的协同过滤推荐算法由于签到数据稀疏导致推荐效果不佳。为提高推荐效果并克服传统协同过滤推荐算法受到热门地点影响的不足,提出一种新的地点推荐算法。将签到地点转换为向量,通过向量的余弦相似性计算签到地点的地点相似性。标记签到频次较低的地点为冷门地点,以计算签到地点的用户相似性,结合地理因素的影响,生成对用户的推荐列表。实验结果表明,相比传统协同过滤推荐算法,该算法 F 1值提升了0.009以上,推荐效果更好。展开更多
文摘在地点推荐应用中,传统的协同过滤推荐算法由于签到数据稀疏导致推荐效果不佳。为提高推荐效果并克服传统协同过滤推荐算法受到热门地点影响的不足,提出一种新的地点推荐算法。将签到地点转换为向量,通过向量的余弦相似性计算签到地点的地点相似性。标记签到频次较低的地点为冷门地点,以计算签到地点的用户相似性,结合地理因素的影响,生成对用户的推荐列表。实验结果表明,相比传统协同过滤推荐算法,该算法 F 1值提升了0.009以上,推荐效果更好。