期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis on effective stress formula and consolidation of gassy muddy clay
1
作者 徐浩峰 应宏伟 +1 位作者 谢新宇 谢康和 《Journal of Central South University》 SCIE EI CAS 2014年第4期1594-1599,共6页
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ... In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected. 展开更多
关键词 muddy clay gas bubble consolidation effective stress unsaturated soil
下载PDF
Characterising Vertical Redistribution on Irrigated Furrows in the Tukulu Soil
2
作者 Sabelo Sicelo Wesley Mavimbela Leon Daniel van Rensburg Alain Cloot 《Journal of Agricultural Science and Technology(A)》 2013年第7期542-560,共19页
Subsurface soil water redistribution on the South African Tukulu, also referred as the Cutanic Luvisols in other countries, was evaluated following single run irrigation (20, 40, 80 and 160 L/min inflow rates) in 90... Subsurface soil water redistribution on the South African Tukulu, also referred as the Cutanic Luvisols in other countries, was evaluated following single run irrigation (20, 40, 80 and 160 L/min inflow rates) in 90 m furrows. Changes in soil water content (SWC) at three horizons were monitored using neutron water meter. Measurements were made every 10 m starting 5 m from the furrow inlet for 455 h. HYDRUS-2D software was used to estimate soil hydraulic parameters through inverse optimization algorithms for redistribution at the inlet, midpoint and furrow end. Optimized model parameters compared with initial estimates recorded satisfactory agreement between measured and predicted soil water content, despite spatial variability. Effective hydraulic conductivity (Keff) for 0-600 mm and 0-850 mm profile flow domains demonstrated linearity with SWC although inconsistencies under field conditions were inevitable. The underlying layer restricted gravity and augmented redistribution with Keff assuming a steeper gradient than normal. Conversion of KCff and soil water content into a ratio assisted in quantifying rate of redistribution at 0-600 mm and 0-850 mm profile depth. Vertical redistribution was found to be limited within the upper 600 mm depth thus providing the opportunity to develop furrow irrigation with confidence that water productivity is optimized. 展开更多
关键词 Soil water redistribution inflow rates effective unsaturated hydraulic conductivity infiltrated depth HYDRUS-2D.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部