A novel unsaturated polyphosphoester(UPPE) was devised in our previous research,which is a kind of promising scaffold for improving bone regeneration.However,the polymerization process of UPPE scaffolds was unfavorabl...A novel unsaturated polyphosphoester(UPPE) was devised in our previous research,which is a kind of promising scaffold for improving bone regeneration.However,the polymerization process of UPPE scaffolds was unfavorable,which may adversely affect the bioactivity of osteoinductive molecules added if necessary,such as recombinant human bone morphogenetic protein-2(rhBMP2).The purpose of this study was to build a kind of optimal scaffold named UPPE-PLGA-rhBMP2(UPB) and to investigate the bioactivity of rhBMP2 in this scaffold.Furthermore,the cytotoxicity and biocompatibility of UPB scaffold was assessed in vitro.A W1/O/W2 method was used to fabricate PLGA-rhBMP2 microspheres,and then the microspheres were added to UPPE for synthesizing UPB scaffold.The morphological characters of PLGA-rhBMP2 microspheres and UPB scaffolds were observed under the scanning electron microscopy and laser scanning confocal microscopy.The cumulative release of UPB scaffolds was detected by using ELISA.The cytotoxicity and biocompatibility of UPB scaffolds were evaluated through examining the adsorption and apoptosis of bone marrow stromal cells(bMSCs) seeded on the surface of UPB scaffolds.The bioactivity of rhBMP2 in UPB scaffolds was assessed through measuring the alkaline phosphates(ALP) activity in bMSCs seeded.The results showed that UPB scaffolds sequentially exhibited burst and sustained release of rhBMP2.The cytotoxicity was greatly reduced when the scaffolds were immersed in buffer solution for 2 h.bMSCs attached and grew on the surface of soaked UPB scaffolds,exerting well biocompatibility.The ALP activity of bMSCs seeded was significantly enhanced,indicating that the bioactivity of rhBMP2 remained and still took effect after the unfavorable polymerization process of scaffolds.It was concluded that UPB scaffolds have low cytotoxicity,good biocompatibility and preserve bioactivity of rhBMP2.UPB scaffolds are promising in improving bone regeneration.展开更多
Fibrous hydroxyapatite ( HA ) wns grown upwards from the crosslinked unsaturated polyphosphoester( UPPE ) which was used us an injectable bone tissue engineering scaffolds. Composition of fibrous HA was determine...Fibrous hydroxyapatite ( HA ) wns grown upwards from the crosslinked unsaturated polyphosphoester( UPPE ) which was used us an injectable bone tissue engineering scaffolds. Composition of fibrous HA was determined by FT- IR, XRD and EDX, which suggested that the fibrous HA was calcium deficient carbonated apatitie with low crystallinity. SEM micrographs indicated that the fibrous HA had a hollow tubing structure and tube wall wus a flakelike assembly. The fibre with poor mechanical property arm with a growth rate about 0. 5 mm/min reached several centimeters in length after 2 hours. The growth was at the tip of the fibre suggested that the procedure of forming fibrous HA was as follows : Co^2+ ions were firstly incorporated into the crosslinked UPPE by dipping in Ca^2+ solution, then supplied through micropores of the material reacted with PO4^3- ions to form α small tuhe , the osmotic pressure or capillary force lead the Ca^2+ continuously gushed oat into the PO4^3- solution, thus fibrous HA was obtained.展开更多
基金supported by a grant from the Scientific and Technological Project of Wuhan,China (No. 200960223069)
文摘A novel unsaturated polyphosphoester(UPPE) was devised in our previous research,which is a kind of promising scaffold for improving bone regeneration.However,the polymerization process of UPPE scaffolds was unfavorable,which may adversely affect the bioactivity of osteoinductive molecules added if necessary,such as recombinant human bone morphogenetic protein-2(rhBMP2).The purpose of this study was to build a kind of optimal scaffold named UPPE-PLGA-rhBMP2(UPB) and to investigate the bioactivity of rhBMP2 in this scaffold.Furthermore,the cytotoxicity and biocompatibility of UPB scaffold was assessed in vitro.A W1/O/W2 method was used to fabricate PLGA-rhBMP2 microspheres,and then the microspheres were added to UPPE for synthesizing UPB scaffold.The morphological characters of PLGA-rhBMP2 microspheres and UPB scaffolds were observed under the scanning electron microscopy and laser scanning confocal microscopy.The cumulative release of UPB scaffolds was detected by using ELISA.The cytotoxicity and biocompatibility of UPB scaffolds were evaluated through examining the adsorption and apoptosis of bone marrow stromal cells(bMSCs) seeded on the surface of UPB scaffolds.The bioactivity of rhBMP2 in UPB scaffolds was assessed through measuring the alkaline phosphates(ALP) activity in bMSCs seeded.The results showed that UPB scaffolds sequentially exhibited burst and sustained release of rhBMP2.The cytotoxicity was greatly reduced when the scaffolds were immersed in buffer solution for 2 h.bMSCs attached and grew on the surface of soaked UPB scaffolds,exerting well biocompatibility.The ALP activity of bMSCs seeded was significantly enhanced,indicating that the bioactivity of rhBMP2 remained and still took effect after the unfavorable polymerization process of scaffolds.It was concluded that UPB scaffolds have low cytotoxicity,good biocompatibility and preserve bioactivity of rhBMP2.UPB scaffolds are promising in improving bone regeneration.
文摘Fibrous hydroxyapatite ( HA ) wns grown upwards from the crosslinked unsaturated polyphosphoester( UPPE ) which was used us an injectable bone tissue engineering scaffolds. Composition of fibrous HA was determined by FT- IR, XRD and EDX, which suggested that the fibrous HA was calcium deficient carbonated apatitie with low crystallinity. SEM micrographs indicated that the fibrous HA had a hollow tubing structure and tube wall wus a flakelike assembly. The fibre with poor mechanical property arm with a growth rate about 0. 5 mm/min reached several centimeters in length after 2 hours. The growth was at the tip of the fibre suggested that the procedure of forming fibrous HA was as follows : Co^2+ ions were firstly incorporated into the crosslinked UPPE by dipping in Ca^2+ solution, then supplied through micropores of the material reacted with PO4^3- ions to form α small tuhe , the osmotic pressure or capillary force lead the Ca^2+ continuously gushed oat into the PO4^3- solution, thus fibrous HA was obtained.