Large-scale secondary motions are known to occur in turbulent flows over surfaces with spanwise roughness heterogeneity.Numerical studies often use adjacent high-and low-roughness longitudinal strips to investigate th...Large-scale secondary motions are known to occur in turbulent flows over surfaces with spanwise roughness heterogeneity.Numerical studies often use adjacent high-and low-roughness longitudinal strips to investigate these secondary rolls in boundary layers without any thermal stratification.In the present study,the effect of unstable thermal stratification on secondary rolls in a very high-Reynolds-number turbulent flow with spanwise-heterogeneous roughness is investigated by means of large-eddy simulation.The strength of the unstable stratification is systematically changed from L/h=−20 to L/h=−1,where L and h are Monin-Obukhov length and boundary-layer height,respectively.This range covers the transition from neutral stratification to unstable stratification.The results show that the positive buoyancy associated with the unstable thermal stratification acts against the roughness-induced secondary rolls.In the case of unstable stratification,secondary rolls are completely canceled out by buoyancy and replaced by new stronger convection-induced rolls rotating in opposite directions.展开更多
An analysis was performed of the turbulent data obtained from Yucheng experimental station in the Shandong Province in 1984. [t is shown that at variant wind speed, the spectra of streamwise velocity remain similar an...An analysis was performed of the turbulent data obtained from Yucheng experimental station in the Shandong Province in 1984. [t is shown that at variant wind speed, the spectra of streamwise velocity remain similar and the intensity of wind fluctuations is proportional to wind speed in the downwind area of shelter belt. Therefore, we may decide the similarity of wind fluctuations by a speed scale and a length scale which is not correlated with stability, σu /V0 = F(X / H). The -5/3 power range of temperature spectra extends to lower frequency. The variation of ratio σ0 /T. with stability becomes σ0 / T . = C(X / H)( - Z / L)-1/3 . There is not such an extension of -5 / 3 power range in the humidity spectra.展开更多
基金P.F.thanks the Aarhus University Research Foundation(AUFF)for the financial support.M.A.acknowledges the financial support from the Aarhus University Centre for Digitalisation,Big Data and Data Analytics(DIGIT).
文摘Large-scale secondary motions are known to occur in turbulent flows over surfaces with spanwise roughness heterogeneity.Numerical studies often use adjacent high-and low-roughness longitudinal strips to investigate these secondary rolls in boundary layers without any thermal stratification.In the present study,the effect of unstable thermal stratification on secondary rolls in a very high-Reynolds-number turbulent flow with spanwise-heterogeneous roughness is investigated by means of large-eddy simulation.The strength of the unstable stratification is systematically changed from L/h=−20 to L/h=−1,where L and h are Monin-Obukhov length and boundary-layer height,respectively.This range covers the transition from neutral stratification to unstable stratification.The results show that the positive buoyancy associated with the unstable thermal stratification acts against the roughness-induced secondary rolls.In the case of unstable stratification,secondary rolls are completely canceled out by buoyancy and replaced by new stronger convection-induced rolls rotating in opposite directions.
文摘An analysis was performed of the turbulent data obtained from Yucheng experimental station in the Shandong Province in 1984. [t is shown that at variant wind speed, the spectra of streamwise velocity remain similar and the intensity of wind fluctuations is proportional to wind speed in the downwind area of shelter belt. Therefore, we may decide the similarity of wind fluctuations by a speed scale and a length scale which is not correlated with stability, σu /V0 = F(X / H). The -5/3 power range of temperature spectra extends to lower frequency. The variation of ratio σ0 /T. with stability becomes σ0 / T . = C(X / H)( - Z / L)-1/3 . There is not such an extension of -5 / 3 power range in the humidity spectra.