期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Meshfree-based physics-informed neural networks for the unsteady Oseen equations
1
作者 彭珂依 岳靖 +1 位作者 张文 李剑 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期151-159,共9页
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatio... We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution. 展开更多
关键词 physics-informed neural networks the unsteady oseen equation convergence small sample learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部